813 research outputs found

    HI intensity mapping with FAST

    Full text link
    We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST 1919-beam L-band receivers (1.051.05--1.451.45 GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters (w0,waw_{0},w_{a}) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is 6000deg26000\,{\rm deg}^2. However, observing with larger frequency coverage at higher redshift (0.950.95--1.351.35 GHz) improves the projected errorbars on the HI power spectrum by more than 2 σ2~\sigma confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.Comment: 7 pages, 3 figures, submitted to "Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015" conference proceedin

    IR Background Anisotropies in Spitzer GOODS images and constraints on first galaxies

    Get PDF
    We describe the angular power spectrum of unresolved 3.6 micron IR light in Spitzer GOODS fields. The amplitude of the anisotropy spectrum decreases with decreasing flux threshold to which resolved sources are removed from images. When all pixels brighter than a Vega magnitude of 24.6 are removed, the amplitude of the power spectrum at arcminute angular scales can be described with an extra component of z>8 sources with a IRB contribution around 0.4 nW m^-2 sr-1. The shape of the power spectrum, however, is more consistent with that expected for unresolved, faint galaxies at lower redshifts with Vega magnitudes fainter than 23 with a total 3.6 micron intensity between 0.1 to 0.8 nW m^-2 sr^-1. We confirm this assumption by showing that large-scale power decreases rapidly when the unresolved clustering spectrum is measured from a processed HDF-N IRAC image where locations of faint ACS sources with no IR counterparts were also masked. Based on resolved counts and unresolved fluctuations, we find that, at most, about 7.0 nW m^-2 sr^-1 can be ascribed to galaxies.Comment: 4 pages, 3 figures; for additional information see astro-ph/0609451 ; data products are available at http://www.cooray.org/spitzer.htm

    Comparison of constant load exercise intensity for verification of maximal oxygen uptake following a graded exercise test in older adults

    Get PDF
    Maximal oxygen uptake (VO2max) declines with advancing age and is a predictor of morbidity and mortality risk. The purpose here was to assess the utility of constant load tests performed either above or below peak work rate obtained from a graded exercise test for verification of VO2max in older adults. Twenty-two healthy older adults (9M, 13F, 67 ± 6 years, BMI: 26.3 ± 5.1 kg·m−2) participated in the study. Participants were asked to complete two experimental trials in a randomized, counterbalanced cross-over design. Both trials (cycle ergometer) consisted of (1) an identical graded exercise test (ramp) and (2) a constant load test at either 85% (CL85; n = 22) or 110% (CL110; n = 20) of the peak work rate achieved during the associated ramp (performed 10-min post ramp). No significant differences were observed for peak VO2 (L·min−1) between CL85 (1.86 ± 0.72; p = 0.679) or CL110 (1.79 ± 0.73; p = 0.200) and the associated ramp (Ramp85, 1.85 ± 0.73; Ramp110, 1.85 ± 0.57). Using the study participant\u27s mean coefficient of variation in peak VO2 between the two identical ramp tests (2.9%) to compare individual differences between constant load tests and the associated ramp revealed 19/22 (86%) of participants achieved a peak VO2 during CL85 that was similar or higher versus the ramp, while only 13/20 (65%) of participants achieved a peak VO2 during CL110 that was similar or higher versus the ramp. These data indicate that if a verification of VO2max is warranted when testing older adults, a constant load effort at 85% of ramp peak power may be more likely to verify VO2max as compared to an effort at 110% of ramp peak power

    Distinctive phytohormonal and metabolic profiles of Arabidopsis thaliana and Eutrema salsugineum under similar soil drying

    Get PDF
    Main conclusions: Arabidopsis and Eutrema show similar stomatal sensitivity to drying soil. In Arabidopsis, larger metabolic adjustments than in Eutrema occurred, with considerable differences in the phytohormonal responses of the two species. Although plants respond to soil drying via a series of concurrent physiological and molecular events, drought tolerance differs greatly within the plant kingdom. While Eutrema salsugineum (formerly Thellungiella salsuginea) is regarded as more stress tolerant than its close relative Arabidopsis thaliana, their responses to soil water deficit have not previously been directly compared. To ensure a similar rate of soil drying for the two species, daily soil water depletion was controlled to 5–10% of the soil water content. While partial stomatal closure occurred earlier in Arabidopsis (Day 4) than Eutrema (from Day 6 onwards), thereafter both species showed similar stomatal sensitivity to drying soil. However, both targeted and untargeted metabolite analysis revealed greater response to drought in Arabidopsis than Eutrema. Early peaks in foliar phytohormone concentrations and different sugar profiles between species were accompanied by opposing patterns in the bioactive cytokinin profiles. Untargeted analysis showed greater metabolic adjustment in Arabidopsis with more statistically significant changes in both early and severe drought stress. The distinct metabolic responses of each species during early drought, which occurred prior to leaf water status declining, seemed independent of later stomatal closure in response to drought. The two species also showed distinct water usage, with earlier reduction in water consumption in Eutrema (Day 3) than Arabidopsis (Day 6), likely reflecting temporal differences in growth responses. We propose Arabidopsis as a promising model to evaluate the mechanisms responsible for stress-induced growth inhibition under the mild/moderate soil drying that crop plants are typically exposed to

    Measurement of H<sub>2</sub>O<sub>2</sub> within living drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix

    Get PDF
    Hydrogen peroxide (H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; correlates with aging, it may not be causative

    Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon

    Get PDF
    To profile the messenger RNA (mRNA) expression for the 23 known genes of matrix metalloproteinases (MMPs), 19 genes of ADAMTS, 4 genes of tissue inhibitors of metalloproteinases (TIMPs), and ADAM genes 8, 10, 12, and 17 in normal, painful, and ruptured Achilles tendons. Tendon samples were obtained from cadavers or from patients undergoing surgical procedures to treat chronic painful tendinopathy or ruptured tendon. Total RNA was extracted and mRNA expression was analyzed by quantitative real-time reverse transcription–polymerase chain reaction, normalized to 18S ribosomal RNA. In comparing expression of all genes, the normal, painful, and ruptured Achilles tendon groups each had a distinct mRNA expression signature. Three mRNA were not detected and 14 showed no significant difference in expression levels between the groups. Statistically significant (P < 0.05) differences in mRNA expression, when adjusted for age, included lower levels of MMPs 3 and 10 and TIMP-3 and higher levels of ADAM-12 and MMP-23 in painful compared with normal tendons, and lower levels of MMPs 3 and 7 and TIMPs 2, 3, and 4 and higher levels of ADAMs 8 and 12, MMPs 1, 9, 19, and 25, and TIMP-1 in ruptured compared with normal tendons. The distinct mRNA profile of each tendon group suggests differences in extracellular proteolytic activity, which would affect the production and remodeling of the tendon extracellular matrix. Some proteolytic activities are implicated in the maintenance of normal tendon, while chronically painful tendons and ruptured tendons are shown to be distinct groups. These data will provide a foundation for further study of the role and activity of many of these enzymes that underlie the pathologic processes in the tendon

    The K20 survey. VI. The Distribution of the Stellar Masses in Galaxies up to z~2

    Full text link
    We present a detailed analysis of the stellar mass content of galaxies up to z=2.5 in the K20 galaxy sample, that has a 92% spectroscopic completeness and a complete UBVRIzJKsUBVRIzJK_s multicolor coverage. We find that the M/L ratio decreases with redshift: in particular, the average M/L ratio of early type galaxies decreases with zz, with a scatter that is indicative of a range of star--formation time-scales and redshift of formation. More important, the typical M/L of massive early type galaxies is larger than that of less massive ones, suggesting that their stellar population formed at higher z. The final K20 galaxy sample spans a range of stellar masses from M*=10^9Msun to M*=10^12Msun, with massive galaxies ($M*>10^11Msun) detected up to z~2. We compute the Galaxy Stellar Mass Function at various z, of which we observe only a mild evolution (i.e. by 20-30%) up to z~1. At z>1, the evolution of the GSMF appears to be much faster: at z~2, about 35% of the present day stellar mass in objects with M*~10^11Msun appear to have assembled. We also detect a change in the physical nature of the most massive galaxies, since at z>1 a population of massive star--forming galaxies progressively appears. We finally analyze our results in the framework of Lambda-CDM hierarchical models. First, we show that the large number of massive galaxies detected at high z does not violate any fundamental Lambda-CDM constraint based on the number of massive DM halos. Then, we compare our results with the predictions of renditions of both semianalytic and hydro-dynamical models, that range from severe underestimates to slight overestimates of the observed mass density at z<~2. We discuss how the differences among these models are due to the different implementation of the main physical processes. (Abridged)Comment: Accepted for publication on Astronomy & Astrophysic

    The Science Case for an Extended Spitzer Mission

    Full text link
    Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for extending the current Warm Mission to December 2020. Spitzer has already made major impacts in the fields of exoplanets (including microlensing events), characterizing near Earth objects, enhancing our knowledge of nearby stars and brown dwarfs, understanding the properties and structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to study galaxy birth and evolution. By extending Spitzer through 2020, it can continue to make ground-breaking discoveries in those fields, and provide crucial support to the NASA flagship missions JWST and WFIRST, as well as the upcoming TESS mission, and it will complement ground-based observations by LSST and the new large telescopes of the next decade. This scientific program addresses NASA's Science Mission Directive's objectives in astrophysics, which include discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive Summar
    corecore