971 research outputs found

    Flourinated aryl ether polymers exhibiting dual fluoroolefin functionality and methods of forming same

    Get PDF
    Disclosed are telechelic fluoropolymers and methods for forming the polymers. The fluoropolymers can be formed via step-growth polymerization of bis(trifluorovinyloxy)biphenyls with bisphenols. The formed telechelic polymers possess fluoroolefin functionality at the trifluorovinyl aromatic ether endgroups. Internal groups can include difluorodioxyvinylene groups and trifluoroethyl groups. Formation methods of the telechelic polymers can be controlled so as to control molecular weight and degree of unsaturation of the polymers. The end groups and the internal groups can be further reacted independently of each other, e.g., under different temperature conditions, to form a variety of polymers and/or crosslinked polymeric networks

    Riccati-parameter solutions of nonlinear second-order ODEs

    Full text link
    It has been proven by Rosu and Cornejo-Perez in 2005 that for some nonlinear second-order ODEs it is a very simple task to find one particular solution once the nonlinear equation is factorized with the use of two first-order differential operators. Here, it is shown that an interesting class of parametric solutions is easy to obtain if the proposed factorization has a particular form, which happily turns out to be the case in many problems of physical interest. The method that we exemplify with a few explicitly solved cases consists in using the general solution of the Riccati equation, which contributes with one parameter to this class of parametric solutions. For these nonlinear cases, the Riccati parameter serves as a `growth' parameter from the trivial null solution up to the particular solution found through the factorization procedureComment: 5 pages, 3 figures, change of title and more tex

    Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa

    Get PDF
    Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources

    Risk of Suicide Attempt in Adopted and Nonadopted Offspring

    Get PDF
    OBJECTIVE: We asked whether adoption status represented a risk of suicide attempt for adopted and nonadopted offspring living in the United States. We also examined whether factors known to be associated with suicidal behavior would mediate the relationship between adoption status and suicide attempt. METHODS: Participants were drawn from the Sibling Interaction and Behavior Study, which included 692 adopted and 540 nonadopted offspring and was conducted at the University of Minnesota from 1998 to 2008. Adoptees were systematically ascertained from records of 3 large Minnesota adoption agencies; nonadoptees were ascertained from Minnesota birth records. Outcome measures were attempted suicide, reported by parent or offspring, and factors known to be associated with suicidal behavior including psychiatric disorder symptoms, personality traits, family environment, and academic disengagement. RESULTS: The odds of a reported suicide attempt were ∼4 times greater in adoptees compared with nonadoptees (odds ratio: 4.23). After adjustment for factors associated with suicidal behavior, the odds of reporting a suicide attempt were reduced but remained significantly elevated (odds ratio: 3.70). CONCLUSIONS: The odds for reported suicide attempt are elevated in individuals who are adopted relative to those who are not adopted. The relationship between adoption status and suicide attempt is partially mediated by factors known to be associated with suicidal behavior. Continued study of the risk of suicide attempt in adopted offspring may inform the larger investigation of suicidality in all adolescents and young adults

    Environmental limits of Rift Valley fever revealed using ecoepidemiological mechanistic models.

    Get PDF
    Vector-borne diseases (VBDs) of humans and domestic animals are a significant component of the global burden of disease and a key driver of poverty. The transmission cycles of VBDs are often strongly mediated by the ecological requirements of the vectors, resulting in complex transmission dynamics, including intermittent epidemics and an unclear link between environmental conditions and disease persistence. An important broader concern is the extent to which theoretical models are reliable at forecasting VBDs; infection dynamics can be complex, and the resulting systems are highly unstable. Here, we examine these problems in detail using a case study of Rift Valley fever (RVF), a high-burden disease endemic to Africa. We develop an ecoepidemiological, compartmental, mathematical model coupled to the dynamics of ambient temperature and water availability and apply it to a realistic setting using empirical environmental data from Kenya. Importantly, we identify the range of seasonally varying ambient temperatures and water-body availability that leads to either the extinction of mosquito populations and/or RVF (nonpersistent regimens) or the establishment of long-term mosquito populations and consequently, the endemicity of the RVF infection (persistent regimens). Instabilities arise when the range of the environmental variables overlaps with the threshold of persistence. The model captures the intermittent nature of RVF occurrence, which is explained as low-level circulation under the threshold of detection, with intermittent emergence sometimes after long periods. Using the approach developed here opens up the ability to improve predictions of the emergence and behaviors of epidemics of many other important VBDs.The work was partially supported by the National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Change and Health at the London School of Hygiene and Tropical Medicine in partnership with Public Health England (PHE) and in collaboration with the University of Exeter, University College London, and the Met Office. European Union FP7 Project ANTIGONE (Contract 278976). Royal Society Wolfson Research Merit Award. The Alborada Trust

    Defining the gap between research and practice in public relations programme evaluation - towards a new research agenda

    Get PDF
    The current situation in public relations programme evaluation is neatly summarized by McCoy who commented that 'probably the most common buzzwords in public relations in the last ten years have been evaluation and accountability' (McCoy 2005, 3). This paper examines the academic and practitioner-based literature and research on programme evaluation and it detects different priorities and approaches that may partly explain why the debate on acceptable and agreed evaluation methods continues. It analyses those differences and proposes a research agenda to bridge the gap and move the debate forward

    Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa

    Get PDF
    Abstract: Recent outbreaks of animal-borne emerging infectious diseases have likely been precipitated by a complex interplay of changing ecological, epidemiological and socio-economic factors. Here, we develop modelling methods that capture elements of each of these factors, to predict the risk of Ebola virus disease (EVD) across time and space. Our modelling results match previously-observed outbreak patterns with high accuracy, and suggest further outbreaks could occur across most of West and Central Africa. Trends in the underlying drivers of EVD risk suggest a 1.75 to 3.2-fold increase in the endemic rate of animal-human viral spill-overs in Africa by 2070, given current modes of healthcare intervention. Future global change scenarios with higher human population growth and lower rates of socio-economic development yield a 1.63-fold higher likelihood of epidemics occurring as a result of spill-over events. Our modelling framework can be used to target interventions designed to reduce epidemic risk for many zoonotic diseases

    Metastable Nanostructured Metallized Fluoropolymer Composites for Energetics

    Get PDF
    Fluoropolymers have long served as potent oxidizers for metal-based pyrolant designs for the preparation of energetic materials. Commercial perfluoropolyethers (PFPEs), specifically known as Fomblins®, are well-known to undergo accelerated thermal degradation in the presence of native metals and Lewis acids producing energetically favorable metal fluoride species. This study employs the use of PFPEs to coat nano-aluminum (n-Al) and under optimized stoichiometric formulations, harness optimized energy output. The PFPEs serve as ideal oxidizers of n-Al because they are non-volatile, viscous liquids that coat the particles thereby maximizing surface interactions. The n-Al/PFPE blended combination is required to interface with an epoxy-based matrix in order to engineer a moldable/machinable, structurally viable epoxy composite without compromising bulk thermal/mechanical properties. Computational modeling/simulation supported by thermal experimental studies showed that the n-Al/PFPE blended epoxy composites produced an energetic material that undergoes latent thermal metal-mediated oxidation. Details of the work include the operationally simple, scalable synthetic preparation, thermal properties from DSC/TGA, and SEM/TEM of these energetic metallized nanocomposite systems. Post-burn analysis using powder XRD of this pyrolant system confirms the presence of the predominating exothermic metal-mediated oxidized AlF3 species in addition to the production of Al2O3 and Al4C3 during the deflagration reaction. Details of this first epoxy-based energetic nanocomposite entrained with a thermally reactive formulation of PFPE coated n-Al particles are presented herein
    • …
    corecore