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Vector-borne diseases (VBD) of humans and domestic animals are
a significant component of the global burden of disease and a key
driver of poverty. The transmission cycles of VBDs are often strongly
mediated by the ecological requirements of the vectors, resulting
in complex transmission dynamics, including intermittent epidemics
and an unclear link between environmental conditions and disease
persistence. An important broader concern is the extent to which
theoretical models are reliable at forecasting VBDs, as infection dy-
namics can be complex and the resulting systems highly unstable.
Here, we examine these problems in detail using a case study of Rift
Valley Fever (RVF), a high-burden disease endemic to Africa. We de-
velop an eco-epidemiological, compartmental, mathematical model
coupled to the dynamics of ambient temperature and water availabil-
ity and apply it to a realistic setting using empirical environmental
data from Kenya. Importantly, we identify the range of seasonally-
varying ambient temperatures and water body availability that leads
to either: the extinction of mosquito populations and/or RVF (non-
persistent regimens), or to the establishment of long-term mosquito
populations and consequently the endemicity of the RVF infection
(persistent regimens). Instabilities arise when the range of the envi-
ronmental variables overlaps with the threshold of persistence. The
model captures the intermittent nature of RVF occurrence, explained
as low-level circulation under the threshold of detection, with in-
termittent emergence sometimes after long periods. Using the ap-
proach developed here, opens up the ability to improve predictions
of the emergence and behaviors of epidemics of many other impor-
tant vector-borne diseases.

Rift Valley Fever| vector-borne diseases| zoonosis| cross-species trans-
mission | stability analysis | Floquet analysis | viral haemorrhagic fever

Vector-borne diseases form an important class of infectious
diseases, with over one billion human cases and one mil-

lion human deaths per year (1) and are a significant contributor
to global poverty. Current patterns of VBD occurrence are
likely to change in future due to the accelerating rate of global
climate and other environmental change that is predicted over
the next century (2). Climate and land-use change and glob-
alization are expected to affect the geographic distribution
of arthropod species (3) through a variety of mechanisms,
such as: changes to the variability in weather conditions al-
tering survival, reproduction and biting rates of the vectors;
changes to the availability of water bodies via, for instance,
new irrigation patterns and dam constructions, creating new
habitats for disease-competent vectors; human mobility and
animal trade increasing the opportunity for vectors to reach
and establish in new areas. Pathogen ecology is influenced
by climate and weather too, for instance temperature, affects

both the susceptibility of vectors to infection and pathogen
extrinsic incubation periods, which usually requires pathogen
replication at ambient temperatures (see e.g. (4, 5)). From
here on we refer to ‘ambient temperature’ as ’temperature’.

These issues provide the basis of the work reported here.
We focus on Rift Valley fever (RVF), an important mosquito-
borne viral zoonosis. The causative virus is responsible for
major epidemics in Africa and its range appears to be ex-
panding, as demonstrated by phylogeographic analysis (6) and
recent epidemic occurrence in Saudi Arabia and Yemen (7–10).
Furthermore, concern has been raised about the potential for
environmental/climatic changes causing increased impact of
RVF in endemic areas or facilitating its spread to new regions
of the of the world (10–12). RVF virus (RVFV) has a signifi-
cant economic impact on the livestock industry in Africa, and
can cause fatal disease in humans (13).

RVFV has a complex, multi-species epidemiology and is
transmitted by biting mosquitoes, and occasionally directly
by animal body-fluids. Infected mosquitoes transmit RVFV
when taking a blood meal, potentially infecting a wide range of
species. The disease is most significant in domestic ruminants,
although wild animals (e.g. buffalos (14) and rodents (15))
might play an important role as reservoir hosts. Although more
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than 40 mosquito and midge species are known to be capable
of transmitting RVFV (16), Aedes, Mansoni and Culex sp. are
thought to be the most important for virus transmission to
livestock and people.

Climatic drivers, such as temperature and rainfall, have a
strong impact on the complex ecology of both RVFV and its
vectors (17–20). Thus, the epidemiology of RVFV is likely to
be strongly impacted by climate change (21). Other environ-
mental, cultural and socio-economic factors, such as gathering
of large numbers of people and domestic animals during reli-
gious festivities, have relevant implications for the infection
dynamics of RVFV, including driving epidemics (22–25).

The complex features of RVFV infection dynamics have led
to many studies. Empirical statistical approaches have identi-
fied key environmental variables, e.g. temperature and rainfall,
that are associated with disease epidemics, enabling disease
risk to be mapped (11, 18, 19, 22, 23, 25–35). Mechanistic
models have added crucial insights for understanding links be-
tween disease transmission and the environment, by exploring
the impact of seasonality and studying the processes leading
to epidemic transmission (24, 36–52). Despite progress, these
approaches are still subject to important limitations: the ear-
lier mechanistic models do not incorporate seasonality; most
models tend to include either only rainfall or temperature as
contributing factors; if included, seasonality is usually incor-
porated only as an ad hoc periodic variation in the response
(e.g. oviposition rate), rather than in the causative variable,
undermining the realism of the approaches.

A further critical limitation of these studies is that they rely
on rainfall data. In empirical statistical approaches, rainfall
is often considered a ‘predictor variable’ (with the commonly
associated problem of collinearity (53)). In mechanistic mod-
els, rainfall is usually a proxy for breeding sites. In complex
hydrogeological models, rainfall is merely an input to represent
water bodies; the major problem with this approach is that the
dependence of RVFV on rainfall varies widely across countries
and ecoregions, due to, e.g. different types of terrain, evapora-
tion rates, delay between rainfall occurrence and establishment
of water bodies, etc.

To overcome these limitations, we developed a unified,
process-based model built on a realistic representation of how
the dynamics of water bodies obtained from satellite images
(rather than rainfall) and temperature influence the ecology of
the primary mosquito vectors and the epidemiology of RVFV.
A critical feature of using this approach is our ability to inves-
tigate, for the first time, the combined impact of seasonalities
in both water availability and temperature, allowing us to:
i) capture the influence of seasonal patterns of temperature
and water bodies on the quantitative transmission dynamics
of RVFV; ii) quantify the environmental drivers that lead to
regional endemicity of RVFV; iii) assess if transovarial trans-
mission in Aedes sp. (the only species of mosquitoes for which
ovarian transmission is known), is necessary for RVFV persis-
tence; iv) isolate the mechanisms allowing virus re-emergence
after long periods of inactivity in endemic regions (43, 54); v)
identify if, and under which conditions, the complex patterns
of RVFV epidemics resemble chaotic behavior, i.e. the sys-
tem being highly sensitive to initial conditions (55), rendering
disease predictions difficult.

Analysis

Our analyses were conducted within two main contexts: a
theoretical case, represented by a simple sinusoidal variation
of the surface area of water bodies and of temperature (rep-
resented by equations Eq. (6) and Eq. (7)) and a realistic
situation, where we used empirical data for Kenya (namely:
spatially averaged temperature (56) and the total surface area
of water bodies over the entire territory divided by the sur-
face of Kenya; SI Appendix, S1 Text). Here and throughout,
we refer to these two situations as ‘theoretical model’ and
‘realistic model’. We first ran the theoretical model by sys-
tematically changing the mean annual temperature and mean
annual surface area of water bodies, (i.e. parameter Tm and
SPm in equations Eq. (6) and Eq. (7)), for each simulation we
ascertained whether or not the predictions result in sustained
fluctuations in populations of Culex sp. or Aedes sp. (the
dominant vectors in Kenya (57)), or in the prevalence of RVFV
in livestock. All other parameters were kept the same and the
surface area of water bodies and temperature were allowed to
fluctuate in phase with annual periodicity (e.g. the parameters
φS = φT = π in equations Eq. (6) and Eq. (7), but see SI
Appendix, S1 Text for a situation when this constraint was
relaxed). We conducted analyses in both the theoretical and
realistic models using different initial conditions and numbers
of livestock. How frequently the surface area of water bodies
change is likely to have an impact on mosquito populations.
Thus, for the theoretical model, we varied the frequency of
water bodies body surface area fluctuation (i.e. ωS equations
Eq. (6) and Eq. (7)) while ensuring the same overall annual
surface area of water bodies. In order to investigate the inter-
mittent nature of observed RVF epidemics, we assumed that,
when the mean number of infected livestock is below a certain
threshold the epidemic is not detected. This is a reasonable
assumptions considering the frequency of subclinical infections
and the limited diagnostic facilities available in endemic areas.
Cases detected within 30 days apart are assumed to be part
of the same epidemic. We then ran the realistic model 100
times with the initial number of livestock and with infection
prevalence in the livestock randomly drawn from uniform dis-
tributions (respectively 100− 5000 for the number of livestock
and 5% − 20% for the infection prevalence). All other pa-
rameters were kept the same. The simulation was also run
in the absence of transovarial transmission. In each case, we
then estimated the periods of time during which RVFV was
not detected. Predictions of the duration of inter-epidemic
periods for the realistic model were compared with historical
data of RVF epidemics which had occurred in Kenya, 2004 to
2013 obtained from the Global Animal Disease Information
System, EMPRES-i (58).

Results

Influence of the seasonal patterns of temperature and water bod-
ies on the quantitative dynamics of RVFV. The theoretical model
shows (Fig. 1 and more details in Fig. S19 in the SI Ap-
pendix, S1 Text) that different amplitudes and frequencies of
fluctuations in temperature and water availability within the
system result in different disease patterns. It is possible, for
example, that one or both mosquito species might go extinct;
that there could be stable oscillations with one or more annual
peaks in the mosquito population but in a RVFV-free situation;
that there could be stable mosquito populations with sporadic
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Fig. 1. Environmental constraints leading to persistent and non-persistent regimens mosquitoes and RVFV. Panel A-B-C. Impact of mean water bodies surface area and mean
temperature on the population of mosquitoes and RVFV prevalence. Water bodies surface area and temperature are described by sinusoidal functions according to equation
Eq. (6) and Eq. (7). The x−axis shows the mean water bodies surface area SPm while the y−axis the mean temperature Tm, which are the only parameters that are
changed in the simulations while the frequency (ωS = ωT = 2π/365) and phase (φS = φT = π) are kept constant. Panel D-E-F. Impact of frequency of oscillations in
water bodies surface area on the population of mosquitoes. Water bodies surface area is described by sinusoidal functions according to equation Eq. (6) with ( φS = π),
while the temperature is kept constant (T = 25◦). The x−axis shows the mean water bodies surface area SPm while the y−axis the annual number of seasonal peaks in
water bodies surface area, which are the only parameters that are changed in the simulations.
The gray area corresponds to a region in the space of parameters where the mosquitoes population (panels A,B,D,E) or the yearly averaged infection prevalence in livestock
(panel C and F) drops to zero after a transient phase (negative largest Floquet exponents of the linearized system around the null solution); the colored regions with no black
dots, correspond to a region in the space of parameters where the mosquitoes population or the yearly averaged infection prevalence in livestock will always establish sustained
oscillations after a transient phase (negative largest Floquet exponents of the linearized system around a periodic limit cycle solution), the intensity of the color correspond to
the yearly average number of mosquitoes or infection prevalence in livestock. The black dots in panels B and E identify a region in the space of parameters where the solution is
unstable (positive largest Floquet exponents, this because the time considered is too short for the solution to stabilize).
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RVFV epidemics; or that RVFV might become endemic.

Quantifying the environmental drivers leading to regional endemic-
ity of RVFV. The theoretical model predicts the existence of
a temperature-dependent threshold in mean surface area of
water bodies below which, mosquito populations and RVFV
always fade out (grey areas in Fig. 1, which are referred
to as ‘non-persistent regimen’). The model also showed the
parameter space (i.e. the set of all possible combinations of
values for the different parameters) resulting in a ‘persistent
regimen’, i.e. sustained oscillations in the vectors and RVFV
(colored area in Fig. 1). The intensity of the color reflects the
yearly averaged population of the mosquitoes or the yearly
averaged prevalence of RVFV in livestock. The optimal con-
ditions for mosquito occur when the mean body surface area
is at its greatest and when the mean temperature ≈ 26◦C for
Culex and ≈ 22◦C for Aedes (Figure 1). The prevalence of
RVFV in livestock is predicted to be highest when tempera-
ture ≈ 26◦C. The ranges of mean annual temperature and
mean annual water body surface area resulting in sustained
fluctuations in mosquito abundance, in particular for Aedes
sp., differ from those causing sustained oscillations of RVFV in
livestock. There are some regions where RVFV endemicity is
possible in the absence of Aedes sp. and there are a few situa-
tions where a persistent mosquito population does not support
RVFV endemicity (see also Fig. S19 in the SI Appendix, S1
Text). Under a constant temperature, of 25◦C, the average
abundance of Culex sp. decreases with increasing frequency
of oscillation in water availability (Figure 1D). This is due
to non-trivial interactions arising from particular mosquito
population sizes at times when the surface of water bodies
starts decreasing. In contrast, Aedes sp. abundance increases
with the frequency of oscillations in water body surface area
(Figure 1E). This is not surprising as, in contrast to Culex
sp., the hatching of Aedes sp. eggs is driven by flooding and
dessication cycles. In the extreme case of no water body fluc-
tuation, Aedes sp. is expected to go extinct, although this
does not always occur as a small proportion of Aedes eggs
hatch spontaneously without dessication/flooding (59) (Fig.
S20 in the SI Appendix, S1 Text). The domain of the RVFV
persistent conditions is dependent on the abundance of live-
stock, NL, in particular when this impacts on the biting and
oviposition rate (Fig. S21-S23 in the SI Appendix, S1 Text).
The intensity of the fluctuations in temperature and in the
surface area of water bodies appear to have little impact on
mosquito abundance and on whether RVFV becomes endemic
(Fig. S24 in the SI Appendix, S1 Text).

When does the complexity of RVFV dynamics resemble chaotic be-
havior?. Stability refers to the property of an ecosystem to
return to equilibrium if perturbed (55), or equivalently, that
the system will always reach the equilibrium state regard-
less of the initial conditions. In the theoretical model, the
equilibria are represented by extinction of mosquito species
and/or RVFV infection (non-persistent regimen) or, more or
less complex, periodic oscillations (persistent regimen). For
the mosquito populations, Floquet analysis (see ‘Material and
Methods’ and SI Appendix, S1 Text) demonstrates that the
long term mathematical solutions are stable. For RVFV in-
fection, numerical computations show that the solutions are
stable once the initial conditions, i.e. the initial number of
livestock, are fixed (Fig. S25 in the SI Appendix, S1 Text).

Fig. 2. During the time of simulation (32 years), the mean surface area of water
bodies and mean temperature is cyclic changing according to path A and path B
illustrated in bottom panel in Fig. 1.C; i.e. for path A: during the first year, the mean
surface area of water bodies increases according to a stepwise function with four
months interval (Fig. S27) from 6500m2 to 7500m2 and the mean temperature
is constant at 30◦ followed by a second year with constant mean surface area of
water bodies at 7500m2 while the mean temperature is decreasing according to a
stepwise function with two months interval, from 30◦ to 25◦, during the third year
the mean surface area of water bodies decrease according to a stepwise function
with for months interval, from 7500m2 to 6500m2 and the mean temperature is
constant at 25◦, followed by a fourth year when the mean temperature is increasing
according to a stepwise function with two months interval, from 25◦ to 30◦ and the
mean surface area of water bodies is constant at 6500m2; for path B: the dynamics
is the same for path A but the range of the mean surface area of water bodies is
between 3000m2 and 4000m2 and for mean temperature the range is between 18◦

and 23◦. A) Dynamics of mosquitoes population and RVFV infection in livestock when
mean temperature and mean surface area of water bodies changes according to path
A, for two different initial conditions: Scenario 1) Exposed and removed livestock and
all mosquitoes stages are set to zero except for the susceptible and infected livestock
SL = 495 and IL = 5 and mosquitoes eggs OC = 100, OI = 100 Scenario 2)
As in scenario 1, but SL = 480 and IL = 20 and mosquitoes eggs OC = 100,
OI = 100. The asymptotic behavior is the same in both scenarios. B) as in A) but
the mean temperature and mean surface area of water bodies changes according to
path B. The asymptotic behavior is different for the different scenarios.
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Changing the initial number of livestock has no practical effect
on the overall population of mosquitoes, when the impact of
livestock on mosquito oviposition and biting rate is assumed
to be negligible (i.e. for very large values of the parameter q
as in this case, but see Fig. S23 in the SI Appendix, S1 Text,
for other scenarios). The number of livestock, however, pre-
dictably impacts the temporal patterns of infected mosquitoes
and infected livestock (Fig. S25 in the SI Appendix, S1 Text)
and the system can no longer be considered stable if the num-
ber of livestock is externally perturbed. Accordingly, animal
movements, including the immigration of infected animals,
might have a significant impact on the pattern of RVFV in-
fection. Similar behavior is observed for the realistic model,
where simulations show that, regardless of the initial condi-
tions, the system approaches the same asymptotic limit, with
only the initial number of livestock having a direct impact on
the patterns of infections (Fig. S25 in the SI Appendix, S1
Text). The property that the system always reverts to the
same asymptotic solution (after fixing the initial number of
livestock), is not general. An important counter-example is
shown in Figure 2 (and S26 in the SI Appendix, S1 Text).
In this simulation experiment we consider the two scenarios
illustrated by Path A and Path B in Fig. 1.C; first when
the mean temperature and mean surface area of water bod-
ies are always within the RVFV persistent regimen, secondly
when these values transit from RVFV persistence to RVFV
non-persistence and then back again. To do so, we divided
the entire time (32 years) into 8 cycles; each 4−year cycle
(described either by Path A or Path B in Fig. 1.C), consists
of 4 intervals of one year each (represented by the segments
in the paths). For each interval, we let the mean values Tm
or SPm in equations Eq. (6)-Eq. (7) change year by year (Fig.
S27 in the SI Appendix, S1 Text). For each scenario we then
considered two different situations, by imposing different the
initial condition in the infection prevalences (but the same
total number of livestock). When the mean temperature and
mean surface area of water bodies varies within the RVFV
persistent regimen (Path A), the system reaches the same limit
irrespective of the different initial conditions (Fig. 2.A). In
contrast, for the situation described by Path B, different values
of the initial infection prevalence lead to qualitatively different
solutions (Fig. 2.B), a phenomenon resembling chaotic systems
observed in meteorology. This phenomenon can be stronger
for different parameter values, leading to a situations when
the overall mosquito populations, as well as their infection
prevalences, are asymptotically different (Fig. S26 in the SI
Appendix, S1 Text).

Is transovarial transmission in Aedes necessary for RVFV persis-
tence?. The simulations of RVFV dynamics demonstrated per-
sistence in Culex sp. in the absence of Aedes mosquitoes (Fig.
3) over 15-years in the realistic model. The numerical simula-
tion shows, persistent patterns of RVFV occur in absence of
Aedes sp. In the theoretical model, the use of Floquet theory
should prevent the problem of infection persistence at unrealis-
tic low levels (‘atto-fox problem’ (60)), as the theory focuses on
the stability of the precise zero, or periodic, solution (although
here the stability of RVFV was studied only numerically). In
general, random extinctions of RVFV preclude persistence of
infection, although one could argue that deterministic mod-
els mimic the fact that random extinctions are compensated
by random immigration of infected mosquitoes or livestock.

Fig. 3. Assessing the impact of transovarial transmission. Dynamics of Culex sp.
population and RVFV infection in livestock in absence of Aedes sp. population for the
realistic model. The theoretical cases is exemplified by Fig. S19.B in the SI Appendix,
S1 Text.

Incorporating demographic stochasticity and spatial immigra-
tion would address this concern. Taking all this into account,
we cautiously conclude that the transovarial transmission of
RVFV in Aedes sp. is not a prerequisite for RVFV persistence
over time, although the models provide no evidence to discount
this as an important (49), transmission route in reality.

Isolate the drivers enabling the virus to re-emerge after long periods
of inactivity in endemic regions. Here we assumed that when the
mean number of infected livestock is below a certain threshold,
chosen to be 50, (see also SI Appendix, S1 Text for 5 infected
animals and 1% of infection prevalence), the epidemic is not
detected by routine surveillance. The patterns of the distribu-
tions of these disease-undetected times (Fig. 4) are similar for
the situations when both mosquitoes species are present and
when Aedes sp., and thus transovarial transmission, is absent.
The empirical inter-epidemic periods observed in Kenya from
2004 to 2013 (58) are shown for comparison. The similarity
of the patterns suggests a strong impact of external drivers
and variation in immunity in livestock populations, compared
to the impact of the mosquito species. Both distributions are
multimodal (Fig. 4) with several peaks occurring, interestingly
several small peaks occur over long time periods (> 10 years).
This shows that RVFV can circulate in the system at very
low, undetectable, levels, emerging unexpectedly after very
long time periods. For lower level of threshold (Fig. S29
in the SI Appendix, S1 Text), the probability of observing
long inter-epidemic periods is smaller. This further highlights
the importance of including stochasticity in the diagnostic
(the detection threshold). As discussed above, demographic
stochasticity allows for the extinction of the infection, and
other factors, such as spatial immigration, would allow re-
emergence. Incorporating this mechanism would likely have a
detectable impact on patterns of the inter-epidemic periods.

Lo Iacono et al.
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Fig. 4. Assessing the intermittent nature of RVFV. Histogram representing the density
of duration of inter-epidemic periods for empirical data and for the model when Aedes
spp. is absent (origin of figure-4 due to only to undetected cases) and when both
mosquitoes species are present (origin of figure-4 due to undetected cases and
transovarial transmission).

Discussion

We identified the range of seasonally varying temperatures
and water body extent leading either to extinction of mosquito
populations and/or RVFV or to established mosquito popu-
lations and endemicity of the infection. These results allow
prediction of future geographic distribution of RVFV due to
changes in environmental and climatic conditions across the
globe.

To achieve this, we developed a process-based mathematical
model, which unifies environmental factors, the ecology of
mosquitoes and the epidemiology of RVFV.

A unified framework for the dynamics of VBDs. A key advantage of
the current model is its conceptual simplicity, with the unde-
niable complexity of the system reduced to a few fundamental
factors: surface area of water bodies governing mosquito ovipo-
sition rates, and temperature affecting mosquito developmental
rates, their survival and biting rate as well as the extrinsic
incubation period of RVFV. The impact of these parameters
cascades on the dynamics of the mosquito population and thus
RVFV. The seasonality of mosquito abundance and infection
prevalence is largely governed by the seasonality in water body
surface area and temperature. The resulting patterns, however,
are not trivial due to the non-linearity of the system; even in
a theoretical system represented by simple sinusoidal variation
of water body surface area and temperature, the different com-
binations of these results in qualitatively different regimens,
including one or both mosquito becoming extinct, a RVFV-
free scenario but with established mosquito populations, or
with sustained oscillations of mosquito abundance and RVFV
prevalence (in mosquitoes and livestock) with one or more
annual peaks. The modular nature of the model facilitates its
calibration and validation. For example, the mosquito model
can be tested in an RVFV-free situation, only subsequently

including the effects of the disease.

Environmental conditions allowing established mosquito popula-
tions and viral persistence. The abundance of mosquito eggs is
ultimately constrained by the maximum density of eggs (i.e.
number of eggs per unit surface area) and the surface area of
water bodies, resulting in a carrying capacity that results in a
stable mosquito population irrespective of initial conditions.
In the realistic scenarios, this was demonstrated numerically;
in the theoretical systems we proved the stability of the sys-
tem by using Floquet analysis. This demonstrated a lower
threshold in mean water body surface areas below which the
mosquito populations will go extinct otherwise it will result
in sustained oscillation. The value of this threshold depends
non-monotonically on the mean temperature and it is con-
fined between a lower and upper values, reflecting the fact
that mosquitoes do not survive in very cold or very dry hot
temperatures. The analysis also showed the importance of the
frequency of fluctuations in water body dynamics, especially
for Aedes sp. Similar thresholds in temperature and water
bodies occur for the persistence of RVFV in livestock, reflect-
ing the geographic distribution of the disease. Here, livestock
numbers were also critical. The bio-physical interpretation of
stability analysis is extremely important. For example, stable
oscillations in the mosquito population imply that, unless there
is a permanent change in the drivers (e.g. average surface area
of water bodies), any temporary measure aiming to reduce
the mosquito population, e.g. chemical control, will not result
in a permanent solution as mosquito abundance is expected
to return to the original values once application of control
measures stops. Similarly, if mosquitoes are imported into a
region whose temperature and water body parameters are in
the persistent regimen, then they will become established in
this new environment.

Intermittent nature of RVFV and the problem of predictability. Epi-
demics of RVFV are intermittent and typically not very pre-
dictable (43, 54). Severe epidemics are provoked by flooding
after protracted periods of drought. Transovarial transmis-
sion in Aedes mosquitoes is a mechanism of RVFV persistence
(61) and a possible explanation for the intermittent nature
of RVFV epidemics as presumably infected Aedes sp. eggs
can survive for several years. Another explanation is that
RVFV is always circulating in the population, perhaps in a
cryptic reservoir (14, 15, 62), at very low level and not de-
tected. This is supported by evidence of inter-epidemic RVFV
seropositivity among humans and animals (63, 64) and the
indication of sub-clinical infection in livestock (65). Our model
suggests that transovarial transmission is not necessary for
inter-epidemic persistence of RVFV and the infection may
continuously circulate at low and largely undetectable levels in
between irregular epidemics; change in immunity in livestock
population is playing an important role in the irregularity
of the infection patterns. This result is strictly valid, how-
ever, when all animals and mosquitoes are well connected
(e.g. through animal movement), as our deterministic model
is based on the assumption of uniform mixing. Our theoret-
ical model shows that, once the initial number of livestock
is fixed, the solution is stable and long term behavior can
be accurately predicted even if the initial conditions, such as
the exact number of infected animals or the abundance of
mosquitoes at a given time, are not known. If the number of
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livestock, however, is perturbed, the solutions are qualitatively
and quantitatively different even if all other conditions are kept
identical. Thus, for reliable predictions accurate information
on the demography of livestock is necessary (for the impact
of the livestock size on infection see SI Appendix, S1 Text).
In some situations, however, this is not sufficient. The mean
surface areas of water bodies and temperatures can change (as
in Kenya, when mean surface area of water bodies decreased
during 2003−2007, Fig. S4 SI Appendix, S1 Text), and transit
from the persistent to non-persistent regimen and vice-versa.
In such situations, the system becomes highly sensitive to the
initial values of infection prevalence, a situation that resem-
bles chaotic behavior. Thus the irregularity of the system can
arise even from small variations in the infection prevalence,
due to, for example, immigration of a few infected livestock.
Clearly, variations in the demography of livestock (such as
occur in festivals (24)) and transitions across persistent and
non-persistent regimens are additional causes of figure-4 in
RVFV.

A programme for future work. This work identified important chal-
lenges that could be addressed by further theoretical work and
model-guided fieldwork. Fieldwork can be designed to test
well-defined hypotheses that emerge from the model, such as
the predicted larger abundance of Aedes sp. in regions where
water bodies are fluctuating more frequently and the existence
of thresholds in surface area of water bodies and temperature
confining the domain of the persistent regimens for mosquito
species and RVFV infection. Further experiments to gauge the
impact of livestock density on mosquito oviposition and biting
rates (66) are crucial as this will have an important effect on
the mosquito population and on patterns of RVFV infection
(see SI Appendix, S1 Text). In most cases we focus on one
host only. Co-presence of multiple hosts can dilute or amplify
the disease. Further investigations on host feeding preference
(67) and the relationship between mosquito abundance and
host population size is critical to estimate this effect (68). A
challenging point is the large uncertainty associated with many
parameter values, in particular the life-history parameters of
mosquitoes stage are often based on laboratory conditions and
inferred for different species of mosquitoes. Theoretical works
like this can steer future fieldwork and experimentation to
reduce the knowledge gaps that emerged from the model.

The potential impacts of multiple hosts, including wildlife
hosts (e.g. buffalo) also needs to be investigated. We assumed
uniform mixing between mosquitoes and livestock. As a result,
the predicted patterns of infection in Aedes sp., Culex sp. and
livestock are qualitatively similar. The model ought to be
generalized to incorporate heterogeneity occurring in nature.
Furthermore, the model needs to be refined to incorporate
the impact of vegetation and natural predators on the ecology
of mosquitoes. This could be done, for example, by allowing
the birth and mortality rate to depend on such factors and
calibrating the model accordingly. The presence of livestock
and other animals might attract mosquitoes from neighbor
areas, via CO2 emission, resulting in a density dependent
vector-to-host ratio relationships (68). In general, climate
change is expected to cause not only an increase in the average
temperature, but also rainfall intensity and frequency. Climate
projections can be readily incorporated in the model for a more
accurate analysis of the impact of climate change on the ecology
of mosquitoes and the epidemiology of RVFV. The impact of

animal movement is an an other crucial driver of RVFV (34)
(see also discussion in (69)). Future research should address,
for instance, how the epidemiology of RVFV changes in the
presence of livestock immigration and how this is affected by
the size of these imports and the number of infected animals
in each batch.

Our analysis was done using a deterministic model, but
environmental stochasticity and external periodic drivers (e.g.
seasonality in temperature and surface area of water bodies)
can resonate with the natural frequencies of the eco-system
(70) with large effects on the ecology of mosquitoes and the
epidemiology of RVFV. Furthermore, patterns of the inter-
epidemic periods should be assessed by taking into account
stochastic variability in demography and diagnostic at differ-
ent spatial settings. These are crucial questions to consider in
future research. Extension of the model to include spatial vari-
ability is the natural progression of this work. By using high
spatio-temporal resolution of water bodies (71), temperature
(56), type of vegetation data, and animal census, the model
could be carefully calibrated to assess whether or not the envi-
ronmental variables are within the persistent regimens. Then
the approach could be used to generate a map of potentially
endemic regions for RVFV or other VBDs in order to plan
interventions more effectively (e.g. aiming at long term con-
trol of environmental conditions, such as reducing the size of
water bodies, in endemic areas and short term measures, such
as limiting animal movement, in non-endemic areas). If the
environmental variables are at the interface between persistent
and non-persistent regimens, then more robust uncertainty
and sensitivity analysis is required, exploring not only the
space of parameters, but also the plausible distribution of
the initial conditions, such as livestock population and its
infection prevalence. This also raises important practical and
theoretical questions on the reliability of statistical models
based on presence/absence of cases, when the epidemiology is
subject to chaotic behavior.

Materials and Methods

The model combines an ecological, stage-structured, pop-
ulation dynamics model for the Aedes sp. and Culex
sp. with an epidemiological Susceptible-Exposed-Infectious-
Recovered (SEIR) compartmental model for the livestock and
a Susceptible-Exposed-Infectious (SEI) model for the two
mosquito populations. For simplicity we assume only one
host, although the model can be readily extended to include
multiple heterogeneous hosts (e.g. goats, cattle, sheep). The
stage-structured, population dynamics of the mosquitoes is
largely based on the model of Otero et al. (72), which in-
cludes the effect of temperature on the development rate of
the mosquitoes. Important additions to Otero et al.’s model
are: i) the dependence of the oviposition process on the water
bodies surface; ii) the separation of Aedes sp. eggs in mature
and immature eggs; iii) the dependency of the number of eggs
per batch on the density of livestock. Below we emphasize the
novel aspects of the model, while a detailed formulation of the
framework is presented in the SI Appendix, S1 Text.

Eco-epidemiological model. The Culex sp. populations consist
of: eggs (OC), larvae (LC) pupae (PC) nulliparous female, i.e.
female adults not having laid eggs (C1), flyers (FC), and
female adults having laid eggs C2; the Aedes sp. consist of:
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immature and mature eggs (OI and OM ), larvae (LA), pupae
(PA), nulliparous female (A1), flyers (FA), and female adults
having laid eggs A2. Adult male mosquitoes are not explicitly
included, and only one half of the emerging adults are females.
Once the first gonotrophic cycle (i.e. feeding on blood meal
and laying of eggs) ends, the nulliparous female becoming a
flyer (FC and FA) in search of breeding sites followed by a
series of cyclic transitions, regulated by the second gonotrophic
cycle to the adult stage (C2 and A2) and back to the flyer
status (FC and FA).

Temperature dependent development rates for the
gonotrophic cycles, in the limit of infinitely available blood
meal, were based on parametrization presented in the literature
(42), the other stages were modeled according to Schoolfield’s
simplification of Sharpe and DeMichele’s model for poikilo-
therm development (73) based on data from (74) (SI Appendix,
S1 Text and table S6). Lifestage-specific mortality rates for
Culex quinquefasciatus and Aedes aegypti were extracted from
data collected under standard laboratory conditions in (74).
Ordinary least squares regression models were fitted with mor-
tality rate as the response variable and temperature (15−34◦C)
as the explanatory variable (Figs. S17-S18 and SI Appendix,
S1 Text). Besides the daily mortality in the pupal stage, there
is an additional mortality associated with the emergence of
the adult (72).

The population dynamics of eggs is regulated by the avail-
ability and dynamics of suitable breeding sites, i.e. temporary
water bodies (dambos) (Fig. S13-S14 in the SI Appendix, S1
Text) typically formed by heavy rainfall. In contrast with
Culex sp., Aedes sp. lay their eggs in the moist soils above
mean high water surrounding the water body (SI Appendix, ,
Figure S14). According to (75), the average time for egg depo-
sition is tdep = 0.229 days in laboratory conditions, which are
assumed to be ideal conditions; at field scale the mosquitoes
need to search for a suitable breeding site reducing the ovipo-
sition rate, i.e. number of times a flyer lay a batch of eggs
per time unit. Thus the oviposition rate for is modeled as:
ηCulex = ηAedes ≈

∑
P
SP (t)/(Atdep) where A (assumed to

be the same for both species of mosquito) corresponds to the
typical size of the terrain scanned by a flyer to detect suitable
breeding sites, and SP (t) is the overall surface, at time t, of
the breeding sites dispersed in a region of area A. This region
is estimated as A ≈ 1E6− 2E6 m2 based on some indication
that the spatial range of the activity of mosquitoes would be
up to 1500 m to the nearest suitable water body (76), the time
varying surface SP (t) was obtained by satellite images (71).
For simplicity, the contribution of small, artificial containers
with water such as tires, flower pots, tin cans, clogged rain
gutters, etc. is not included. This is justified by the fact that
common species of the genus Aedes involved in the transmis-
sion of RVFV, such as Aedes mcintoshi, Aedes circumluteolus,
Aedes ochraceus, breed in temporary grassland depressions
(dambos) (17). Breeding sites already occupied by eggs pre-
vent further ovipositions, we therefore introduced a carrying
capacity in the egg load rates, i.e. number of eggs laid by all
flyers per time unit, as: ξCulex = b̃Cη

Culex (1− OCulex
KC

)
and

ξAedes = b̃Aη
Aedes (1− OAedes

KA

)
, where OCulex and OAedes are

the total number of eggs for Culex sp. and Aedes sp. eggs
already laid, in the first case OCulex = OC , in the second
cases it is the sum of mature and immature eggs irrespective
of their infected status; b̃C and b̃A are the number of eggs

per batch, and the carrying capacities KC and KA take into
account that the maximum number of eggs that can be laid
over a water body is limited by its surface, SP (t), namely:
KC ≈

∑
P
ρCκ

CulexSP (t) and KA ≈
∑

P
ρAκ

AedesSP (t),
where ρC and ρA are the density of eggs per surface unit
(either water for Culex sp. or soil for Aedes sp.), κCulexSP (t)
and κAedesSP (t) represent the fraction of the breeding site
suitable for eggs deposition and survival; for Culex sp. this
corresponds the an inner area around the edge of the water
body and for Aedes sp. is the outer moist soil around the
water body (here we assumed that both surface areas are
proportional to the total surface area of the water bodies). In
addition, mosquitoes cannot produce eggs without ingesting
blood meals, thus following the same argument presented in
(66) for triatomines, the numbers of Culex sp. and Aedes sp.
eggs per batch, b̃C and b̃A, are rescaled respectively by a factor
bC/(1 +mC/q) and bA/(1 +mA/q) where bC and bA are the
maximum number of Culex sp. and Aedes sp. eggs produced
per batch in the limit of infinite resources, mC and mA is the
calculated vector-to-host ratio (here assumed to be 1% of the
total number of mosquitoes divided the number of livestock,
SI Appendix, S1 Text) and q the particular vector-to-host
ratio for which vector fecundity is divided by two (but if both
mosquitoes species are present than we consider the total
vector-to-host ratio mC +mA). Based on the same argument
(66), the rates of gonotrophic cycles, which are assumed to
be the same as the biting rates, was rescaled in the same
manner. Accordingly, in absence of host, i.e. no blood-meal,
the number of eggs per batch and the biting rate drops to
zero.

Aedes sp. eggs require a minimum desiccation period Td,
after this period they are ready to hatch provided that they
are submerged in water, although 19.7% of newly embry-
onated Aedes sp. eggs hatch spontaneously without flooding
(59), Aedes sp. eggs can survive dessication for several years.
Therefore we distinguish two egg stages OI and Om, with
development time of newly laid eggs OI conditioned to:

1
θAedes
O1

≈max
(
Td,

1
θAedes
O

[T (t)]

)
[1]

where θAedes
O [T (t)] is the temperature dependency of develop-

ment rate of the eggs (72) (SI Appendix, S1 Text, equations
S14 and S21, table S6).

Aedes sp. eggs will hatch at the time of the first flood (e.g.
at time t when SP (t)− SP (t−∆t) > 0), Thus during a small
time ∆t, the variation in the number of mature eggs due to
hatching can be modeled as:

OM (t)−OM (t−∆t)≈

−

Number of submerged eggs︷ ︸︸ ︷
max

[
ρA(t)

(
κAedesSP (t)− κAedesSP (t−∆t)

)
, 0
]

[2]
[3]

i.e. if the water body is shrinking, no eggs will be submerged
and thus no egg will hatch; leading to:

OM (t)−OM (t−∆t)=−max
[ (SP (t)−SP (t−∆t))

SP (t)
,0
]
OM (t) [4]

where the superficial density of eggs at time t was estimated
as ρA(t) ≈ OM (t)/(κAedesSP (t)). The continuous counterpart
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of the above equation leads to:

τAedes
O =max

(
1

SP (t)
dSP (t)

dt ,0
)

[5]

where the term dSP (t)
dt represents the rate of change of the

surface area of a water body.

Combined mosquito and livestock population model in the
presence of infection. RVFV transmission in Aedes mosquitoes
can be transovarial or horizontal while only horizontal transmis-
sion, mediated by biting infectious hosts, is possible for Culex
sp. Both adult Culex sp. and Aedes sp. can become infected
after feeding on infectious livestock IL. More precisely, for
Culex sp., the movement out from the susceptible categories, C1
and C2, are θ̃CulexC1 C1 and θ̃CulexC2 C2 respectively; out of these,
λL→C1C1 and λL→C2C2 mosquitoes move to the exposed,
flyer category, FExpC . The remaining (θ̃CulexC1 − λL→C1)C1 and
(θ̃CulexC2 −λL→C2)C2 move to the susceptible, flyer category, FC .
Similar argument apply to Aedes sp., but in this case, there is
an additional infectious category for nulliparous mosquitoes,
AInf

1 , emerging out of infectious eggs due to transovarial trans-
mission. The exposed categories then transit to the adult
infectious categories (CInf

1 and CInf
2 for Culex, and AInf

1 and
AInf

2 for Aedes) with rate εC and εA respectively. The exposed
and infectious populations will lead to the exposed and infec-
tious flyer populations (FExp

C and F Inf
C for Culex sp., and FExp

A

and F Inf
A for Aedes sp.) followed by cyclic transitions to the

corresponding exposed and infectious adult stages and back to
the exposed and infectious flyer stages. Furthermore, infected
Aedes sp. flyer (i.e. either exposed (FExp

A ) or infectious (F Inf
A )),

will deposit infectious eggs OInf
I which will turn into infectious

larvae LInf
A , infectious pupae P Inf

A infectious nulliparous adults
AInf

1 , etc. The explicit set of differential equations is presented
in the SI Appendix, , S1 Text. Parameters are based on data
presented in the literature (see (40, 42, 72) and references
therein, tables S3, S4 and S5) and adapted to the Kenya
situation (e.g. temperature (56), and water bodies (71)).

Stability analysis for seasonal systems: Floquet theory. Flo-
quet analysis is a well-established tool suitable to study the
stability of seasonal systems (77, 78). In the simplest scenarios,
temperature and water bodies can be approximated by the
periodic functions:

SP (t) = SPm + SPA cos (ωSt+ φS) [6]

T (t) = Tm + TA cos (ωT t+ φT ) [7]

where ωS and ωT are the frequencies of oscillations in surface
areas of water bodies and temperature, the terms SPm and Tm
represent the mean surface area of water bodies and mean
temperature during a period 2π/ωS and 2π/ωT respectively,
SPA and TA are the maximum amplitude in the oscillations
and φS and φT are the respective phases. Then we ran the
model, and calculated the corresponding Floquet multipliers,
for a range of frequencies, mean surface area of water bodies
and mean temperature to explore which of these parameters
lead to stable solutions. More details are in the SI Appendix,
, S1 Text.
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