66 research outputs found
Hyperdense artery sign, symptomatic infarct swelling and effect of alteplase in acute ischaemic stroke
Alteplase improves functional outcomes of patients with acute ischaemic stroke, but its effects on symptomatic infarct swelling, an adverse complication of stroke and the influence of CT hyperdense artery sign (HAS) are unclear. This substudy of the Third International Stroke Trial aimed to investigate the association between HAS and symptomatic infarct swelling and effect of intravenous alteplase on this association. We included stroke patients whose prerandomisation scan was non-contrast CT. Raters, masked to clinical information, assessed baseline (prerandomisation) and follow-up (24-48 hours postrandomisation) CT scans for HAS, defined as an intracranial artery appearing denser than contralateral arteries. Symptomatic infarct swelling was defined as clinically significant neurological deterioration ≤7 days after stroke with radiological evidence of midline shift, effacement of basal cisterns or uncal herniation. Among 2961 patients, HAS presence at baseline was associated with higher risk of symptomatic infarct swelling (OR 2.21; 95% CI 1.42 to 3.44). Alteplase increased the risk of swelling (OR 1.69; 95% CI 1.11 to 2.57), with no difference between patients with and those without baseline HAS (p=0.49). In patients with baseline HAS, alteplase reduced the proportion with HAS at follow-up (OR 0.67; 95% CI 0.50 to 0.91), where HAS disappearance was associated with reduced risk of swelling (OR 0.25, 95% CI 0.14 to 0.47). Although alteplase was associated with increased risk of symptomatic infarct swelling in patients with or without baseline HAS, it was also associated with accelerated clearance of HAS, which in return reduced swelling, providing further mechanistic insights to underpin the benefits of alteplase
Blood pressure variability and leukoaraiosis in acute ischemic stroke
Higher blood pressure, blood pressure variability, and leukoaraiosis are risk factors for early adverse events and poor functional outcome after ischemic stroke, but prior studies differed on whether leukoaraiosis was associated with blood pressure variability, including in ischemic stroke. In the Third International Stroke Trial, blood pressure was measured in the acute phase of ischemic stroke immediately prior to randomization, and at 0.5, 1, and 24 h after randomization. Masked neuroradiologists rated index infarct, leukoaraiosis, and atrophy on CT using validated methods. We characterized blood pressure variation by coefficient of variance and three other standard methods. We measured associations between blood pressure, blood pressure variability, and leukoaraiosis using generalized estimating equations, adjusting for age, and a number of covariates related to treatment and stroke type/severity. Among 3017 patients, mean (±SD) systolic and diastolic blood pressure decreased from 155(±24)/82(±15) mmHg pre-randomization to 146(±23)/78(±14) mmHg 24 h later ( P < 0.005). Mean within-subject coefficient of variance was 0.09 ± 0.05 for systolic and 0.11 ± 0.06 for diastolic blood pressure. Patients with most leukoaraiosis were older and had higher blood pressure than those with least ( P < 0.0001). Although statistically significant in simple pairwise comparisons, no measures of blood pressure variability were associated with leukoaraiosis when adjusting for confounding variables ( P > 0.05), e.g. age. Our results suggest that blood pressure variability is not a potential mechanism to explain the association between leukoaraiosis and poor outcome after acute stroke
Effect of alteplase on the CT hyperdense artery sign and functional outcome after ischemic stroke
© 2015 American Academy of Neurology. STUDY FUNDING The startup phase of IST-3 was supported by a grant from the Stroke Association, UK (TSA 04/99). The expansion phase was funded by the Health Foundation UK (2268/1282). The scan reading development was funded by Chest, Heart Stroke Scotland (R100/7). The main phase of the trial is funded by UK Medical Research Council (MRC) (grant numbers G0400069 and EME 09-800-15) and managed by NIHR on behalf of the MRC-NIHR partnership; the Research Council of Norway; Arbetsmarknadens Partners Forsakringsbolag (AFA) Insurances Sweden; the Swedish Heart Lung Fund; The Foundation of Marianne and Marcus Wallenberg, Stockholm County Council; Karolinska Institute Joint ALF-project grants Sweden; the Polish Ministry of Science and Education (grant number 2PO5B10928); the Australian Heart Foundation; Australian National Health and Medical Research Council (NHMRC); the Swiss National Research Foundation; the Swiss Heart Foundation; the Foundation for Health and Cardio-/Neurovascular Research, Basel, Switzerland; the Assessorato alla Sanita, Regione dell'Umbria, Italy; and, Danube University, Krems, Austria. Boehringer-Ingelheim GmbH donated drug and placebo for the 300 patients in the double-blind phase, but thereafter had no role in the trial. The UK Stroke Research Network (SRN study ID 2135) adopted the trial on 1/5/2006, supported the initiation of new UK sites, and in some centers, and, after that date, data collection was undertaken by staff funded by the network or working for associated NHS organizations. IST-3 acknowledges the support of the NIHR Stroke Research Network, NHS Research Scotland (NRS), through the Scottish Stroke Research Network, and the National Institute for Social Care and Health Research Clinical Research Centre (NISCHR CRC). The central imaging work was undertaken at the Brain Imaging Research Centre (www.sbirc.ed.ac.uk), a member of the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaboration (www.sinapse.ac.uk), at the Division of Clinical Neurosciences, University of Edinburgh. SINAPSE is funded by the Scottish Funding Council (SFC) and the Chief Scientist Office of the Scottish Executive (CSO). Additional support was received from Chest Heart and Stroke Scotland, DesAcc, University of Edinburgh, Danderyd Hospital R&D Department, Karolinska Institutet, Oslo University Hospital, and the Dalhousie University Internal Medicine Research Fund.Peer reviewedPublisher PD
Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke
Rationale: Cerebral small vessel disease (SVD) is common in ageing and patients with dementia and stroke. Its manifestations on magnetic resonance imaging (MRI) include white matter hyperintensities, lacunes, microbleeds, perivascular spaces, small subcortical infarcts, and brain atrophy. Many studies focus only on one of these manifestations. A protocol for the differential assessment of all these features is, therefore, needed.
Aims: To identify ways of quantifying imaging markers in research of patients with SVD and operationalize the recommendations from the STandards for ReportIng Vascular changes on nEuroimaging guidelines. Here, we report the rationale, design, and methodology of a brain image analysis protocol based on our experience from observational longitudinal studies of patients with nondisabling stroke.
Design: The MRI analysis protocol is designed to provide quantitative and qualitative measures of disease evolution including: acute and old stroke lesions, lacunes, tissue loss due to stroke, perivascular spaces, microbleeds, macrohemorrhages, iron deposition in basal ganglia, substantia nigra and brain stem, brain atrophy, and white matter hyperintensities, with the latter separated into intense and less intense. Quantitative measures of tissue integrity such as diffusion fractional anisotropy, mean diffusivity, and the longitudinal relaxation time are assessed in regions of interest manually placed in anatomically and functionally relevant locations, and in others derived from feature extraction pipelines and tissue segmentation methods. Morphological changes that relate to cognitive deficits after stroke, analyzed through shape models of subcortical structures, complete the multiparametric image analysis protocol.
Outcomes: Final outcomes include guidance for identifying ways to minimize bias and confounds in the assessment of SVD and stroke imaging biomarkers. It is intended that this information will inform the design of studies to examine the underlying pathophysiology of SVD and stroke, and to provide reliable, quantitative outcomes in trials of new therapies and preventative strategies
Clinical relevance and practical implications of trials of perfusion and angiographic imaging in patients with acute ischaemic stroke:a multicentre cohort imaging study
Peer reviewedPublisher PD
The Brain Health Index: Towards a combined measure of neurovascular and neurodegenerative structural brain injury
Background:
A structural magnetic resonance imaging measure of combined neurovascular and neurodegenerative burden may be useful as these features often coexist in older people, stroke and dementia.
Aim:
We aimed to develop a new automated approach for quantifying visible brain injury from small vessel disease and brain atrophy in a single measure, the brain health index.
Materials and methods:
We computed brain health index in N = 288 participants using voxel-based Gaussian mixture model cluster analysis of T1, T2, T2*, and FLAIR magnetic resonance imaging. We tested brain health index against a validated total small vessel disease visual score and white matter hyperintensity volumes in two patient groups (minor stroke, N = 157; lupus, N = 51) and against measures of brain atrophy in healthy participants (N = 80) using multiple regression. We evaluated associations with Addenbrooke’s Cognitive Exam Revised in patients and with reaction time in healthy participants.
Results:
The brain health index (standard beta = 0.20–0.59, P < 0.05) was significantly and more strongly associated with Addenbrooke’s Cognitive Exam Revised, including at one year follow-up, than white matter hyperintensity volume (standard beta = 0.04–0.08, P > 0.05) and small vessel disease score (standard beta = 0.02–0.27, P > 0.05) alone in both patient groups. Further, the brain health index (standard beta = 0.57–0.59, P < 0.05) was more strongly associated with reaction time than measures of brain atrophy alone (standard beta = 0.04–0.13, P > 0.05) in healthy participants.
Conclusions:
The brain health index is a new image analysis approach that may usefully capture combined visible brain damage in large-scale studies of ageing, neurovascular and neurodegenerative disease
- …