37 research outputs found

    Cryptic Speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) Reveals an Underestimated Diversity among the Peripatid Velvet Worms

    Get PDF
    Taxonomical studies of the neotropical Peripatidae (Onychophora, velvet worms) have proven difficult, due to intraspecific variation and uniformity of morphological characters across this onychophoran subgroup. We therefore used molecular approaches, in addition to morphological methods, to explore the diversity of Epiperipatus from the Minas Gerais State of Brazil.Our analyses revealed three new species. While Epiperipatus diadenoproctussp. nov. can be distinguished from E. adenocryptussp. nov. and E. paurognostussp. nov. based on morphology and specific nucleotide positions in the mitochondrial cytochrome c oxidase subunit I (COI) and small ribosomal subunit RNA gene sequences (12S rRNA), anatomical differences between the two latter species are not evident. However, our phylogenetic analyses of molecular data suggest that they are cryptic species, with high Bayesian posterior probabilities and bootstrap and Bremer support values for each species clade. The sister group relationship of E. adenocryptussp. nov. and E. paurognostussp. nov. in our analyses correlates with the remarkable morphological similarity of these two species. To assess the species status of the new species, we performed a statistical parsimony network analysis based on 582 base pairs of the COI gene in our specimens, with the connection probability set to 95%. Our findings revealed no connections between groups of haplotypes, which have been recognized as allopatric lineages in our phylogenetic analyses, thus supporting our suggestion that they are separate species.Our findings suggest high cryptic species diversity and endemism among the neotropical Peripatidae and demonstrate that the combination of morphological and molecular approaches is helpful for clarifying the taxonomy and species diversity of this apparently large and diverse onychophoran group

    Host Shifts from Lamiales to Brassicaceae in the Sawfly Genus Athalia

    Get PDF
    Plant chemistry can be a key driver of host shifts in herbivores. Several species in the sawfly genus Athalia are important economic pests on Brassicaceae, whereas other Athalia species are specialized on Lamiales. These host plants have glucosides in common, which are sequestered by larvae. To disentangle the possible direction of host shifts in this genus, we examined the sequestration specificity and feeding deterrence of iridoid glucosides (IGs) and glucosinolates (GSs) in larvae of five species which either naturally sequester IGs from their hosts within the Plantaginaceae (Lamiales) or GSs from Brassicaceae, respectively. Furthermore, adults were tested for feeding stimulation by a neo-clerodane diterpenoid which occurs in Lamiales. Larvae of the Plantaginaceae-feeders did not sequester artificially administered p-hydroxybenzylGS and were more deterred by GSs than Brassicaceae-feeders were by IGs. In contrast, larvae of Brassicaceae-feeders were able to sequester artificially administered catalpol (IG), which points to an ancestral association with Lamiales. In line with this finding, adults of all tested species were stimulated by the neo-clerodane diterpenoid. Finally, in a phylogenetic tree inferred from genetic marker sequences of 21 Athalia species, the sister species of all remaining 20 Athalia species also turned out to be a Lamiales-feeder. Fundamental physiological pre-adaptations, such as the establishment of a glucoside transporter, and mechanisms to circumvent activation of glucosides by glucosidases are therefore necessary prerequisites for successful host shifts between Lamiales and Brassicaceae

    The Impact of Human Conflict on the Genetics of Mastomys natalensis and Lassa Virus in West Africa

    Get PDF
    Environmental changes have been shown to play an important role in the emergence of new human diseases of zoonotic origin. The contribution of social factors to their spread, especially conflicts followed by mass movement of populations, has not been extensively investigated. Here we reveal the effects of civil war on the phylogeography of a zoonotic emerging infectious disease by concomitantly studying the population structure, evolution and demography of Lassa virus and its natural reservoir, the rodent Mastomys natalensis, in Guinea, West Africa. Analysis of nucleoprotein gene sequences enabled us to reconstruct the evolutionary history of Lassa virus, which appeared 750 to 900 years ago in Nigeria and only recently spread across western Africa (170 years ago). Bayesian demographic inferences revealed that both the host and the virus populations have gone recently through severe genetic bottlenecks. The timing of these events matches civil war-related mass movements of refugees and accompanying environmental degradation. Forest and habitat destruction and human predation of the natural reservoir are likely explanations for the sharp decline observed in the rodent populations, the consequent virus population decline, and the coincident increased incidence of Lassa fever in these regions. Interestingly, we were also able to detect a similar pattern in Nigeria coinciding with the Biafra war. Our findings show that anthropogenic factors may profoundly impact the population genetics of a virus and its reservoir within the context of an emerging infectious disease

    Anticoagulation for non-valvular atrial aibrillation – towards a new beginning with ximelagatran

    Get PDF
    OBJECTIVES: Ximelagatran is a novel oral direct thrombin inhibitor. It has favorable pharmacodynamic properties, with a broad therapeutic range without the need for anticoagulation monitoring. We aimed to discover whether ximelagatran offers a genuine future replacement to warfarin for patients in persistent atrial fibrillation (AF). MATERIALS AND METHODS: We provide an evidence-based review of the relative merits and disadvantages of warfarin and aspirin. We subsequently present an overview of the evidence for the utility of ximelagatran in the treatment of AF. RESULTS: Adjusted dose warfarin is recommended over aspirin for patients in AF at high risk of future stroke. Some of this benefit is partially offset by the higher bleeding risks associated with warfarin therapy. The SPORTIF III and V studies have shown that ximelagatran is not inferior to warfarin in the prevention of all strokes in patients with AF (both persistent and paroxysmal). This benefit was partially offset by the finding of a significant elevation of liver transaminases (>3 × normal) in 6% of patients. CONCLUSIONS: Current data would suggest that ximelagatran might represent a future alternative to warfarin. The lack of need for anticoagulant monitoring has been partially offset by a need for regular monitoring of liver function. Further data from randomized clinical trials is clearly needed

    The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)

    Get PDF
    The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora

    Evolutionary History of the Odd-Nosed Monkeys and the Phylogenetic Position of the Newly Described Myanmar Snub-Nosed Monkey Rhinopithecus strykeri

    Get PDF
    Odd-nosed monkeys represent one of the two major groups of Asian colobines. Our knowledge about this primate group is still limited as it is highlighted by the recent discovery of a new species in Northern Myanmar. Although a common origin of the group is now widely accepted, the phylogenetic relationships among its genera and species, and the biogeographic processes leading to their current distribution are largely unknown. To address these issues, we have analyzed complete mitochondrial genomes and 12 nuclear loci, including one X chromosomal, six Y chromosomal and five autosomal loci, from all ten odd-nosed monkey species. The gene tree topologies and divergence age estimates derived from different markers were highly similar, but differed in placing various species or haplogroups within the genera Rhinopithecus and Pygathrix. Based on our data, Rhinopithecus represent the most basal lineage, and Nasalis and Simias form closely related sister taxa, suggesting a Northern origin of odd-nosed monkeys and a later invasion into Indochina and Sundaland. According to our divergence age estimates, the lineages leading to the genera Rhinopithecus, Pygathrix and Nasalis+Simias originated in the late Miocene, while differentiation events within these genera and also the split between Nasalis and Simias occurred in the Pleistocene. Observed gene tree discordances between mitochondrial and nuclear datasets, and paraphylies in the mitochondrial dataset for some species of the genera Rhinopithecus and Pygathrix suggest secondary gene flow after the taxa initially diverged. Most likely such events were triggered by dramatic changes in geology and climate within the region. Overall, our study provides the most comprehensive view on odd-nosed monkey evolution and emphasizes that data from differentially inherited markers are crucial to better understand evolutionary relationships and to trace secondary gene flow

    Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera.</p> <p>Results</p> <p>Gene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing <it>Piliocolobus/Procolobus </it>and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from <it>Piliocolobus</it>/<it>Procolobus </it>into <it>Colobus</it>. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, <it>Semnopithecus </it>diverged first, indicating langur paraphyly. However, unidirectional gene flow from <it>Semnopithecus </it>into <it>Trachypithecus </it>via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene.</p> <p>Conclusions</p> <p>Overall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.</p
    corecore