13 research outputs found

    Gauge links for transverse momentum dependent correlators at tree-level

    Get PDF
    In this paper we discuss the incorporation of gauge links in hadronic matrix elements that describe the soft hadronic physics in high energy scattering processes. In this description the matrix elements appear in soft correlators and they contain non-local combinations of quark and gluon fields. In our description we go beyond the collinear approach in which case also the dependence on transverse momenta of partons is taken into consideration. The non-locality in the transverse direction leads to a complex gauge link structure for the full process, in which color is entangled, even at tree-level. We show that at tree-level in a 1-parton unintegrated (1PU) situation, in which only the transverse momentum of one of the initial state hadrons is relevant, one can get a factorized expression involving transverse momentum dependent (TMD) distribution functions. We point out problems at the level of two initial state hadrons, even for relatively simple processes such as Drell-Yan scattering.Comment: 25 pages, corrected typos and updated reference

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Factorization model for distributions of quarks in hadrons

    Get PDF
    We consider distributions of unpolarized (polarized) quarks in unpolarized (polarized) hadrons. Our approach is based on QCD factorization. We begin with study of Basic factorization for the parton-hadron scattering amplitudes in the forward kinematics and suggest a model for non-perturbative contributions to such amplitudes. This model is based on the simple observation: after emitting an active quark by the initial hadron, the remaining set quarks and gluons becomes unstable, so description of this colored state can approximately be done in terms of resonances, which leads to expressions of the Breit-Wigner type. for non-perturbative contributions to the distributions of unpolarized and polarized quarks in the hadrons. Then we reduce these formulae to obtain explicit expressions for the quark-hadron scattering amplitudes and quark distributions in K_T- and Collinear factorizations.Comment: 18 pp, 7 figures. In the present version we include a discussion on rapidity divergences, correct some unclearly presented issues and eliminate misprint

    Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering

    Get PDF
    The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.Comment: Matches published version, JHEP style, 36 pages and 2 figures, minor correction

    Exceptional thermodynamics: the equation of state of G2 gauge theory

    Full text link
    corecore