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Abstract We consider distributions of unpolarized (polar-
ized) quarks in unpolarized (polarized) hadrons. Our approa-
ch is based on QCD factorization. We begin with a study
of the basic factorization for the parton–hadron scattering
amplitudes in the forward kinematics and suggest a model
for non-perturbative contributions to such amplitudes. This
model is based on this simple observation: after emitting an
active quark by the initial hadron, the remaining set of quarks
and gluons becomes unstable, so a description of this col-
ored state can approximately be done in terms of resonances,
which leads to expressions of the Breit–Wigner type. Then
we reduce these formulas to obtain explicit expressions for
the quark–hadron scattering amplitudes and quark distribu-
tions in KT - and collinear factorizations.

1 Introduction

QCD factorization, i.e. separation of perturbative and non-
perturbative QCD contributions, proved to be an efficient
instrument for describing hadron reaction at high energies.
Being first applied to processes in the hard kinematics in the
form of collinear factorization [1–13], it was soon extended
to cover the forward kinematic region, with DGLAP [14–17]
used to account for the perturbative contributions. Then, in
order to be able to use BFKL [18–20], a new kind of fac-
torization, KT -factorization was suggested in Ref. [21,22].
These kinds of factorization are usually illustrated by identi-
cal pictures. For instance, factorization of the DIS hadronic
tensor Wμν is conventionally depicted by the construction
in Fig. 1 both in collinear and in KT -factorizations, where
the upper, perturbative blob and the lower, non-perturbative
blob are connected by two-parton state. The upper blob in
Fig. 1 is calculated with regular perturbative means. On
the contrary, the lower blob is conventionally introduced
from purely phenomenological considerations. Collinear and
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KT -factorizations operate with different parametrizations for
momentum k of the connecting partons and, as a result, they
are described by different formulas. Collinear factorization
assumes that

k = βp, (1)

while KT -factorization allows for the transverse momentum
in addition:

k = βp + k⊥, (2)

accounting therefore for one longitudinal and two transverse
components of k. However, as a matter of fact, k has four
components: two of them are longitudinal and the other two
are transverse. Accounting for the missing longitudinal com-
ponent α (for the definition of α see Eq. (3)) drove us to sug-
gesting a new, more general factorization, which we called
in Ref. [23,24] basic factorization. In contrast to KT - and
collinear factorizations, the analytic expressions in basic fac-
torization can be obtained from the graphs of the type of the
one in Fig. 1 with applying the standard Feynman rules.

It is worth recalling briefly our derivation of basic fac-
torization; for details see Ref. [23,24]. Let us consider the
Compton scattering amplitude off a hadron in the forward
kinematics. It is depicted in Fig. 2.

The blob in Fig. 2 denotes an ensemble of perturbative and
non-perturbative contributions. This blob can be expanded
into an infinite series of terms; each of them is represented by
two blobs connected with n parton lines, n = 2, 3, . . .. Con-
sidering only the simplest, two-parton state, we arrive at the
graph similar to the one in the r.h.s. of Fig. 1 but without the
s-cut and with both blobs accommodating perturbative and
non-perturbative contributions at the same time. The integra-
tion of the convolution in Fig. 1 over momentum k now runs
over the whole phase space and it is expected to lead to a
finite result. However, the propagators of the connecting par-
tons become singular at k2 = 0 (we neglect quark masses).
Besides, the upper blob may contain IR-sensitive perturbative
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Wμν ≈

p p

k k

q q

k:{quarks,
gluons}

Fig. 1 Conventional illustration of QCD factorization. The s-cut of the
graph is implied

contributions ∼ lnn(2pk/k2) (with n = 1, 2, . . .). In addi-
tion, it yields the factor 2qk/k2, when unpolarized gluon
ladders are included into the consideration. The only way
to kill such an IR singularity is to assume that the lowest,
non-perturbative blob should tend to zero fast enough when
k2 → 0. Doing so and repeating a similar procedure to reg-
ulate the UV singularity, we bring the convolution in Fig. 1
to agreement with the factorization concept: perturbative and
non-perturbative contributions are located in different blobs.
This is a new form of QCD factorization which we name
basic factorization.

We demonstrated in Ref. [23,24] that basic factorization
can be reduced step-by-step first to KT - and then to collinear
factorizations. In Ref. [23,24] we began with considering
basic factorization for Compton scattering amplitudes in the
forward kinematics, where integration over momentum k of
the connecting partons in Fig. 1 runs over the whole phase
space. Confronting the two obvious facts that, on the one
hand, the integration over k should yield a finite result and
that, on the other hand, the perturbative part in Fig. 1 (the
upper, perturbative blob and propagators of the connecting
partons) is divergent in both the infra-red (IR) and ultra-violet
(UV) regions allowed us to impose integrability restrictions
on the lowest blob, which are necessary for the convolution
in Fig. 1 to be finite. The obtained restrictions led us to theo-
retical constraints on the fits for the parton distributions to the
DIS structure functions in collinear and KT -factorizations.
In particular, we predicted the general form of the fits in KT -
factorization and excluded the factors x−a from the fits in
both KT - and collinear factorizations.

Another interesting object, where factorization is used, is
the distribution of partons in hadrons. In the present paper
we examine their properties in the IR and UV regions and
suggest a simple resonance model for the non-perturbative
contributions to the parton distributions. Our argumenta-
tion in favor of this model is as follows: after emitting
an active quark by a hadron, the remains of the hadron,
i.e. a set of quarks and gluons, acquires a color and there-
fore it becomes unstable. So, this colored state can be
described in terms of resonances. We begin with consid-
ering amplitudes of the quark–hadron (QHA) and gluon–

Fig. 2 Amplitude for forward
Compton scattering off a hadron
target

p p

q q
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hadron (GHA) scattering in the forward kinematics. The
optical theorem relates such amplitudes to the parton distri-
butions. Throughout the paper we use the standard Sudakov
parametrization [25] for the momentum k of the connecting
partons:

k = −αq ′ + βp′ + k⊥, (3)

where momenta q ′ and p′ are massless, p′2 ≈ q ′2 ≈ 0, and
they are made of the hadron momentum p and the parton
momentum q:

p′ = p + x2q, q ′ = q + x1 p, (4)

where x2 = −p2/w ≡ −M2/w, x1 = −q2/w, with
w = 2pq ≈ 2p′q ′. In these terms

2pk = w(−α − x2β), 2qk = w(β − x1α),

k2 = −wαβ − k2⊥. (5)

In Sect. 2 we introduce the quark–hadron scattering ampli-
tudes in the forward kinematics and examine their IR and
UV behavior. In Sect. 3 we consider separately the unpolar-
ized and spin-dependent quark–hadron amplitudes in basic
factorization and suggest a model for non-perturbative contri-
butions to the amplitudes. This model involves a spinor struc-
ture accompanied by invariant amplitudes T (U ) and T (S). In
Sect. 3 we specify the spinor structure of the non-perturbative
contributions to the amplitudes and parton distributions. In
Sect. 4 we show how basic factorization for the quark–hadron
amplitudes and quark distributions in hadrons can be reduced
to KT - and collinear factorizations. In Sect. 5 we focus on a
model for the invariant amplitudes T (U ) and T (S). The model
is based on a description of T (U ) and T (S) in a quasi-resonant
way and through the optical theorem it easily leads to non-
perturbative contributions to the parton distributions, with
expressions of the Breit–Wigner kind both in the basic and
in the KT -factorizations. Finally, Sect. 6 is for concluding
remarks.

2 Quark–hadron amplitudes

In the factorization approach, the quark–hadron amplitudes
(QHA) Aq are expressed through convolutions of perturba-
tive amplitudes A(pert) and non-perturbative amplitudes T as
shown in Fig. 3.
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A(pert)
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Fig. 3 Factorization of the quark–hadron amplitude

T

p p
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−q −q

Fig. 4 Born approximation for the factorized quark–hadron amplitude

In the Born approximation A(pert) is depicted in Fig. 4 as
a one-rung ladder. Adding more ladder rungs together with
the inclusion of non-ladder graphs and resumming all such
graphs convert the Born amplitude into A(pert). In the present
paper we do not consider mixing of quark and gluon ladder
rungs, i.e. we consider the graphs where the vertical quark
lines go from the bottom to the top without breaking.

We begin with consideration of the quark–hadron ampli-
tudes Aq in basic factorization, studying the simplest case
depicted in Fig. 4, where the perturbative contributions are
accounted for in the Born approximation and we denote such
distributions Bq. In basic factorization one can use the stan-
dard Feynman rules to write down the analytic expression
corresponding to the graphs in Figs. 3 and 4. Doing so, we
obtain

Bq = −ı4παsCF

∫
d4k

(2π)4

ū(q)γμk̂ T̂q(k, p)k̂γνu(q)

k2k2(q + k)2 dμν,

(6)

where we have used the standard notation CF = (N 2 −
1)/(2N ) = 4/3 and αs is the QCD coupling. In Eq. (6) T̂q

corresponds to the lowest blob in Fig. 3. It is an altogether
non-perturbative object. Throughout the paper we will call it
the primary quark–hadron amplitude.1 Choosing the Feyn-
man gauge, where dμν = gμν , for the virtual gluon and the

1 In Ref. [26,27] non-perturbative contributions to parton distributions
in the context of collinear factorization were called intrinsic contribu-
tions.

Sudakov parametrization (3) for the quark momentum k, we
rewrite Eq. (6) as follows:

Bq = −ı
αsCF

8π3 w

∫
dαdβd2k⊥

ū(q)γμk̂ T̂q(k, p)k̂γμu(q)

k2k2(q + k)2 .

(7)

Throughout the paper, for the sake of simplicity, we will
treat the external quarks with momentum q as on-shell ones,
though our reasoning remains valid also when they are off-
shell. Introducing the density matrix

ρ̂(p)(q) = 1

2
(q̂ + mq)(1 − γ5 Ŝq), (8)

with q, mq and Sq being the quark momentum, mass, and
spin, respectively, we bring Eq. (7) to the following form:

Bq ≈−ı
αsCF

8π3 w

∫
dαdβd2k⊥

Tr[ρ̂(p)(q)γμk̂ T̂q(k, p)k̂γμ]
k2k2(q+k)2 .

(9)

We stress that the replacement of Eq. (7) by Eq. (9) is not
necessary for us but it allows us to carry out a more detailed
consideration of AB

q . In particular, we can consider sepa-

rately the spin-dependent, B(spin)
q , and independent, B(unpol)

q ,
quark–hadron amplitudes in a simple way:

B(unpol)
q = −ı

αsCF

8π3 w

∫
dαdβd2k⊥

×2(qk)Tr[k̂ T̂ (unpol)
q ] − k2Tr [q̂ T̂ (unpol)

q ]
k2k2(q + k)2 , (10)

B(spin)
q = αsCF

8π3 mqw

∫
dαdβd2k⊥

×2(Sqk) Tr[γ5k̂ T̂
(spin)
q ]−k2Tr[γ5 Ŝq T̂

(spin)
q ]

k2k2(q+k)2 .

(11)

In Eqs. (10) and (11) we have replaced the general pri-
mary amplitude T̂q by the more specific amplitudes T̂ (unpol)

q ,

T̂ (spin)
q . In Eq. (10) we have neglected a contribution ∼ m

in ρ̂(q) compared to the contribution ∼ q̂ . Integrations in
Eqs. (10) and (11) run over the whole phase space and
this is supposed to yield finite results. However, there can
be singularities in the integrands and they should be reg-
ulated. Regulating them with introducing various cut-offs
would be unphysical, so the only way out is to impose
appropriate constraints on the primary quark–hadron ampli-
tudes, T̂ (unpol)

q , T̂ (spin)
q , so that we kill the singularities. When

the perturbative amplitude A(pert) is calculated in the Born
approximation, the only possible singularities in Eqs. (10)
and (11) are IR singularities at k2 = 0 and UV singulari-
ties which we relate to integrations over α. However, when
A(pert) is beyond the Born approximation, there appear other
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kinds of singularities, called in Ref. [28] rapidity divergences.
Below we consider the handling of these singularities in the
framework of basic factorization.

2.1 Rapidity divergences of QHA

Rapidity divergences were investigated first in Ref. [28]
and then in Ref. [29,30] in the context of KT -factorization.
Detailed investigation of this problem can be found in
Ref. [31]. In the lowest order of perturbative QCD, the rapid-
ity divergences come from the graphs in Fig. 5 (and symmet-
rical graphs as well), where the radiative corrections calcu-
lated in the first-loop approximation are convoluted with the
unintegrated parton distribution �̃. Let us stress that �̃ accu-
mulates both perturbative and non-perturbative corrections.
When such convolutions are considered in KT -factorizat-
ion, each of the graphs in Fig. 5 acquires logarithmic diver-
gences arising from integration over the momentum l+ (with
l+ = (l0 + lz)/

√
2). They are called rapidity divergences and

they can be got rid of as shown in Ref. [28] when the Feynman
gauge is used for the gluon propagators and in Ref. [29,30]
for the case of the light-cone gauge. In Refs. [28–30] the
rapidity divergences are cured by redefining �̃.

Now let us study this situation in basic factorization. To
this end we consider a contribution of the graph in Fig. 6 to
the quark–hadron amplitude in basic factorization. We recall
that there are no cuts in Fig. 6 and the blob T accumulates
non-perturbative contributions only.

(a)

Φ

(b)

Φ

p p p p

ll

−q −q −q −q

Fig. 5 Graphs contributing to rapidity divergences in unintegrated par-
ton distributions. The dashed lines denote cuts

T

p p

l

−q −q

+ symmetrical graph

Fig. 6 Graph contributing to quark–hadron amplitude

One of the remarkable features here is that analytic expres-
sions in basic factorization can be obtained by applying stan-
dard Feynman rules to the involved graphs. A second impor-
tant point is that one is free to use any gauge for perturba-
tive QCD calculations2 in basic factorization, whereas the
blob T in Fig. 6 is altogether non-perturbative and there-
fore it is insensitive to the choice of the gauge. Applying the
Feynman rules to the graph in Fig. 6 and integrating over
the loop momentum l, we immediately conclude that this
integration yields a logarithmic UV-divergent contribution,
which, being complemented by a similar contribution from
the symmetrical graph and self-energy graphs, in a conven-
tional way leads to renormalization of the gluon–quark cou-
plings. After absorption of such divergent contributions by
the couplings, we obtain a renormalized amplitude which is
free of divergences. Then applying the optical theorem to this
construction, we arrive at the parton distributions and they
are also free of divergences. Obviously, the same treatment
can be applied to other UV divergences coming from the
perturbative component A(pert) in higher loops: all of them
can be absorbed by renormalizations. Now we focus on the
divergences resulting from integration of the convolutions in
Eqs. (10) and (11), where the perturbative amplitudes A(pert)

are in the Born approximation.

2.2 IR and UV stability of QHA

First of all, let us note that the denominators in Eqs. (10)
and (11) can become singular in the infra-red (IR) region,
where k2 ∼ 0. In the case of purely perturbative QCD, IR
singularities are conventionally regulated by introducing IR
cut-offs. In our case there is no physical reason for that at all,
so we are left with the only way to kill these singularities: The
primary quark–hadron amplitudes T̂q should become small
at small k2:

T̂ (unpol)
q , T̂ (spin)

q ∼ (k2)1+η, (12)

when k2 → 0. Now let us consider the ultra-violet (UV)
stability of the convolutions in Eqs. (10) and (11). The inte-
gration over α in Eqs. (10) and (11) runs from −∞ to ∞,
so at large |α| the integrands should decrease fast enough to
guarantee UV stability. First of all we focus on the integration
over α in Eq. (10). Taking into consideration that each factor
in the denominator of Eq. (10) is ∼ α makes the denominator
∼ α3. The term 2qk in the numerator depends on α because
2qk = w(β − x1α) and the factors k2 and k̂ are ∼ α, which
leads to

2qk k̂

k2k2(q + k)2 ∼ α2

α3 . (13)

2 For gauge invariance of basic factorization see Ref. [23,24].
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This divergence must be regulated by an appropriate decrease
of T̂ (unpol)

q at large |α|. The IR stability condition in Eq. (12)

states that T̂ (unpol)
q ∼ (k2)1+η at small k2 but it can either

disappear or be kept at large |α|. Therefore we have two
options:
(A) The factor (k2)1+η survives at large |α|.
(B) The factor (k2)1+η disappears at large |α|.
In the case (A), where IR and UV behaviors of T̂ (unpol)

q are

related, T̂ (unpol)
q should behave at large |α| as follows:

T̂ (unpol)
q ∼ αη−χ = (α1+η)[α−1−χ ], (14)

with χ > η > 0.
The IR and UV behaviors of T̂ (unpol)

q are disconnected in
the case (B). It converts Eq. (14) into

T̂ (unpol)
q ∼ α−χ . (15)

The first factor in Eq. (14) corresponds to the term (k2)1+η,
while a contribution generating the asymptotic factor in the
squared brackets has to be specified. We will do this in Sect. 5.
Now let us consider the spin-dependent amplitudes. In order
to guarantee their IR stability, the primary spin-dependent
amplitude T̂ (spin)

q should also be ∼ (k2)1+η at small k2 but
the situation with its UV stability is more involved than in
the unpolarized case. Indeed, the quark spin Sq can be either

in the plane formed by p and q, i.e. Sq = S||
q , or in the

transverse space, where Sq = S⊥
q . Depending on it, there

are the longitudinal spin-dependent amplitude, B||
q and the

transverse one, B⊥
q . Now let us consider the term 2mqSqk in

Eq. (11) for different orientations of the quark spin. When
the spin is longitudinal,

2mqSqk = 2mqS
||
q k = w(β − x1α) (16)

and k̂ in the trace Tr [k̂ T̂q] is also ∼ α. In contrast when the
spin is transverse,

2mqSqk = −2mq(
S⊥
q


k⊥), (17)

and therefore S⊥
q k does not depend on α. Then this 
k⊥ should

be accompanied by another 
k⊥ from the trace in order to get
a non-zero result at integration over the azimuthal angle. The
first term in the numerator of Eq. (11) does not depend on α,
while the second term is ∼ α. It means that, with T̂ ||

q dropped,

the explicit α-dependence of A||
q at large |α| coincides with

the one in Eq. (13):

S||
q k k̂

k2k2(q + k)2 ∼ α2

α3 (18)

and

S⊥
q k k̂

k2k2(q + k)2 ∼ α

α3 . (19)

It follows from Eq. (18) that the α-dependence of the
amplitude T̂ ||

q at large |α| is identical to the one of T̂ (unpol)
q :

T̂ ||
q ∼ T̂ (unpol)

q ∼ (α1+η)[α−1−χ ] (20)

in the case (A) and

T̂ ||
q ∼ T̂ (unpol)

q ∼ (α−χ ) (21)

in the case (B). T̂⊥
q can decrease more slowly:

T̂⊥
q ∼ (α1+η)[α−χ ] (22)

in the case (A) and

T̂⊥
q ∼ α1−χ (23)

in the case (B). Equations (12) and (20–23) guarantee the
integrability of the convolutions for the quark–hadron ampli-
tudes in basic factorization. These integrability require-
ments can be used as general theoretical constraints on non-
perturbative contributions to the amplitudes in basic factor-
ization (see Ref. [23,24] for detail) and we will use them in
the present paper. Each of Eqs. (20) and (22) consists of two
factors. The first factor in these equations is universally gen-
erated by the term (k2)1+η, while contributions generating
the factors in squared brackets will be specified in Sect. 5.

3 Modeling the spinor structure of T̂q

Our next step is to simplify the traces in Eqs. (10) and (11).
In order to do it, we have to specify the spinor structure of
the primary QHA T̂q. By definition, T̂q is altogether non-
perturbative, so specifying its spinor structure can only be
done on the basis of phenomenological considerations. How-
ever, any model expression for T̂q should respect the integra-
bility conditions in Eqs. (12) and (14) and (20) and (22).
There is the well-known expression for the density matrix of
an elementary fermion:

ρ̂(p) = 1

2
( p̂ + M)(1 − γ5 Ŝ) ≈ p̂

2
− 1

2
( p̂ + M)γ5 Ŝ, (24)

where M and S are the fermion mass and spin. This expres-
sion leads us to approximate T̂q as follows:

T̂q = p̂ T (U )
q (k2, 2pk) − ( p̂ + M)γ5 Ŝ T (S)

q (k2, 2pk), (25)

where p, S are the hadron momentum and spin, respectively,
and T (U )

q , T (S)
q are scalar functions. Throughout the paper

we will call them invariant quark–hadron amplitudes. Sub-
stituting Tq of Eq. (12) in Eqs. (10) and (11) and calculating
the traces, we arrive at the following expressions:
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B(unpol)
q = −ı

1

8π3

∫
dαdβdk2⊥

[
−g2CF

w

[(q + k)2 + ıε]
]

×
(

k2⊥
k2k2

)
(T (U )

q (k2, 2pk))

= −ı
1

8π3

∫
dαdβdk2⊥ B̃(unpol)

q (q, k)

×
(

k2⊥
k2k2

)
(T (U )

q (k2, 2pk)), (26)

were we have denoted by B̃(unpol)
q the perturbative amplitude

in the Born approximation for the forward annihilation of
unpolarized quark–quark pair. We have neglected contribu-
tions ∼ x1,2 in the numerator of Eq. (26) and will do this in
expressions for the spin-dependent amplitudes. These terms,
if necessary, can easily be accounted for with a more accurate
implementation of Eqs. (3)–(26). Let us consider the struc-
ture of the integrand in Eq. (26) in more detail. The amplitude
in the last brackets is entirely non-perturbative. It is supposed
to mimic a transition from hadrons to quarks. The fraction in
the middle corresponds to convoluting the perturbative and
non-perturbative amplitudes. The fraction in the first brack-
ets corresponds to the perturbative amplitude for the forward
scattering of quarks in the Born approximation. We explic-
itly wrote the factor ıε there to recall that this amplitude has
an s-channel imaginary part. Doing similarly, we obtain an
expression for the spin-dependent amplitudes:

B(spin)
q = ı

g2CF

16π4 2mqMw

∫
dαdβd2k⊥

×2(kSq)(kS) − k2(SqS)

k2k2[(q + k)2 + ıε] T (S)
q . (27)

Let us consider Eq. (27) for a different orientation of the
hadron spin:

(i) The hadron spin S is in the plane formed by momenta p
and q, so for this case we use the notation S = S||.

(ii) The hadron spin is transverse to this plane. We denote
this case as S = S⊥.

Amplitude A‖
q for the first case is given by the expression

very close to the unpolarized amplitude:

B(‖)
q = −ı

1

16π3

∫
dαdβdk2⊥

[
−g2CF

2mM(S‖
q S‖)

(q + k)2 + ıε

]

×
(

k2⊥
k2k2

)
T (‖)

q (k2, 2pk)

= −ı
1

8π4

∫
dαdβd2k⊥ B̃(‖)

q (q, k)

×
(

k2⊥
k2k2

)
T (‖)

q (k2, 2pk), (28)

whereas the transverse amplitude is given by a different
expression:

B(⊥)
q = −ı

1

16π3

∫
dαdβdk2⊥

[
−g2CF

2mM(S⊥
q S⊥)

(q + k)2 + ıε

]

×
(

wαβ

k2k2

)
T (⊥)

q (k2, 2pk)

= −ı
1

8π3

∫
dαdβdk2⊥ B̃(⊥)

q (q, k)

×
(

wαβ

k2k2

)
T (⊥)

q (k2, 2pk), (29)

with B̃(‖)
q , B̃(⊥)

q being the perturbative spin-dependent Born
amplitudes. Accounting for perturbative QCD radiative cor-
rections converts the Born amplitudes B̃(unpol)

q , B̃(‖)
q , B̃(⊥)

q

in Eqs. (26), (28), and (29) into perturbative dimensionless
amplitudes Ã(unpol)

q , Ã(‖)
q , Ã(⊥)

q , the other factors remaining
unchanged:

A(unpol)
q (p, q) = −ı

1

8π3

∫
dβ

dk2⊥
k2 dα Ã(unpol)

q (q, k)

×
(
k2⊥
k2

)
T (U )

q (k2, 2pk),

A(‖)
q (p, q) = −ı

1

8π3

∫
dβ

dk2⊥
k2 dα Ã(‖)

q (q, k)

×
(
k2⊥
k2

)
T (‖)

q (k2, 2pk),

A(⊥)
q (p, q) = −ı

1

8π3

∫
dβ

dk2⊥
k2 dα Ã(⊥)

q (q, k)

×
(

wαβ

k2

)
T (⊥)

q (k2, 2pk). (30)

Taking the s-imaginary part of Eq. (26), we arrive at
the totally unintegrated, or fully unintegrated as stated in
Ref. [32], distribution of unpolarized quarks in the hadron
Dunpol B

q in the Born approximation:

D(unpol B)
q = 1

8π2

∫
dβ

dk2⊥
k2 dα [g2CFδ(β − x − z)]

×k2⊥
k2 
(1)

q (k2, 2pk)

= 1

8π2

∫
dβ

β

dk2⊥
k2 dα [g2CFδ(1 − x/β − z/β)]

×k2⊥
k2 
(1)

q (k2, 2pk) (31)

where x = −q2/w, z = k2⊥/w, and 

(1)
q is the

primary quark distribution of unpolarized quarks in the
hadron, 


(1)
q = (1/π)�T (U )

q . This object is altogether non-
perturbative. Applying the optical theorem to Eq. (30), we
arrive at the parton distributions beyond the Born approxi-
mation:
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D(unpol)
q (x, q2)

= 1

8π2

∫
dβ

β

dk2⊥
k2 dα D̃(unpol)

q (x/β, q2/k2)dβ

(
k2⊥
k2

)

×
(1)
q (k2, wα),

D(‖)
q (x, q2) = 1

8π2

∫
dβ

β

dk2⊥
k2 dα D̃(‖)

q (x/β, q2/k2)

(
k2⊥
k2

)

×
(‖)
q (k2, wα),

D(⊥)
q (x, q2) = 1

8π2

∫
dβ

β

dk2⊥
k2 dα D̃(⊥)

q (x/β, q2/k2)

(
wαβ

k2

)

×
(⊥)
q (k2, wα). (32)

4 Reduction of basic factorization to conventional
factorizations

The conventional forms of factorization are the collinear and
the kT -factorizations. In Ref. [23,24] we described the reduc-
tion of basic factorization to KT - and collinear factoriza-
tions for the Compton scattering amplitudes and DIS struc-
ture functions without specifying the non-perturbative ampli-
tudes Tq. In this section we show that these results perfectly
agree with our assumption in Eq. (25) concerning the struc-
ture of Tq. We demonstrate that the parton distributions in
both conventional factorizations can be obtained with step-
by-step reductions of the expressions for D(unpol)

q , D(‖)
q , D(⊥)

q

in basic factorization. These reductions are the same for both
the parton–hadron amplitudes and the parton distributions,
they are insensitive to the spin and stands when the quarks are
replaced by gluons. Because of that we consider such reduc-
tions for a generic parton–hadron distribution D in basic fac-
torization and skip unessential factors:

D(x, q2⊥) =
∫

dβ
dk2⊥
k2 dαD(pert)(x/β, q2⊥/k2)

(
k2⊥
k2

)

×
(wα, k2), (33)

where D(pert) stands for a perturbative contribution and 
 is
the altogether non-perturbative (we call it primary) parton–
hadron distribution. Actually, 
(wα, k2) is the starting point
for the perturbative evolution. Integration in Eq. (33) runs
over the whole phase space. Let us note that in the literature
very often are considered purely transverse q: q2 ≈ q2⊥.
Because of this we will use the notation q2⊥ instead of q2 in
what follows, though Eqs. (32) and (33) are also valid when
q2 
= q2⊥.

4.1 Reduction to kT -factorization

In order to reduce Eq. (33) to kT -factorization, we have to
perform an integration with respect to α. However, this inte-

gration should not involve D(pert), which, strictly speaking,
is impossible because D(pert) depends on k2 and thereby it
depends on α: k2 = −wαβ − k2⊥. The only way out is to
assume that the main contributions to Eq. (33) come from
the region where

α � αmax = k2⊥/(wβ), (34)

i.e. k2 ≈ −k2⊥. Let us notice that approximating ladder
partons virtualities k2 by their transverse momenta is well
known. It is used in all available evolution equations, includ-
ing DGLAP and BFKL, and now it allows us to convert
Eq. (33) into an expression for the unintegrated (transverse
momentum dependent [33]) parton distributions DKT in kT -
factorization:

DKT (x, q2⊥) ≈
∫ 1

x

dβ

β

∫ r

0

dk2⊥
k2⊥

D(pert)
KT

(x/β, q2⊥/k2⊥)�(wβ, k2⊥), (35)

where r = wβ − q2⊥. Obviously, r ≈ w ≈ q2⊥ for large x ,
while at very small x one can use r ≈ wβ. � denotes the
primary (i.e. non-perturbative) kT -parton distribution. It is
related to 
 as follows:

�(wβ, k⊥) =
∫ k2⊥/wβ

0
dα
(wα, k2⊥). (36)

4.2 Reduction to collinear factorization

In Ref. [23,24] we discussed how to reduce KT -factorization
to the collinear one, using DIS structure functions as an exam-
ple. The same argumentation can be applied to the parton dis-
tributions. We briefly repeat it below. In order to reduce kT -
factorization to collinear factorization, we should perform the
integration of Eq. (35) with respect to k⊥ without integrat-
ing D(pert). Of course this cannot be done straightforwardly,
because D(pert) explicitly depends on k⊥. However, we can
do it approximately, assuming a sharp peaked dependence of

(wα, k2⊥) on k2⊥ with maximum at k2⊥ = μ2, as shown in
Fig. 7. The closer this dependence is to δ(k2⊥−μ2), the higher
is the accuracy of the reduction. As discussed in Ref. [23,24],
the number of such maximums can be unlimited. We recall
that � is non-perturbative, so typical values of μ must be in
the non-perturbative range, μ ∼ �QCD . After the integration
of � we arrive at the collinear factorization convolution

D(col)(x, q2⊥/μ2) ≈
∫ 1

x

dβ

β
D(pert)
col (x/β, q2⊥/μ2)φ(β, μ2),

(37)

with μ being the intrinsic factorization scale and φ being the
primary (non-perturbative) integrated parton distribution:

φ(β,μ2) =
∫

�

dk2⊥
k2⊥

�(wβ, k2⊥), (38)

123
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Φ(β, k2
⊥)

μ2 k2
⊥

Fig. 7 The peaked form of �(β, k2⊥) with one maximum

where the integration region � is located around the max-
imum k2⊥ = μ2. At first sight, the form of the collinear
factorization presented in Eq. (37) contradicts the conven-
tional form. Indeed, the scale μ in Eq. (37) corresponds to
the maximum in Fig. 7 and therefore its value is fixed. On
the contrary, the conventional form of the collinear factoriza-
tion operates with integrated parton distributions ϕ(β, μ̃2),
where the scale μ̃ can have any arbitrary value. Then we
expect the value of μ to be in the non-perturbative range,
where, as usually, μ̃ ∼ few GeV, i.e. typically μ̃ � μ. How-
ever, this contradiction can easily be solved as was shown
in Ref. [23,24]. The point is that a transition from φ(β,μ2)

to ϕ(β, μ̃2) can be done, applying the perturbative evolution
in the μ2 -space to φ(β,μ2) and keeping β fixed. It can be
written symbolically as

ϕ(β, μ̃2) = E(μ̃2, μ2) ⊗ φ(β,μ2), (39)

where E is the evolution operator in the μ2-space. Spe-
cific expressions for E are different in different perturba-
tive approaches (see Appendix E for details). Equation (39)
makes it possible to arrive at the conventional unintegrated
distribution ϕ(β, μ̃2), fixed at an arbitrary scale μ̃2. In con-
trast to φ(β,μ2), the distribution ϕ(β, μ̃2) accumulates both
perturbative and non-perturbative contributions. It is easy to
show that our reasoning remains true in the case when � has
several maximums or an infinite series of them. This point
was discussed in detail in Ref. [23,24], so we will not do it
in the present paper. Instead, we focus on the modeling of
invariant amplitudes T (U,S) as introduced in Eq. (25).

5 Modeling the invariant quark–hadron amplitudes
and primary quark distributions

In this section we suggest a model which mimics non-
perturbative QCD contributions in the primary hadron–quark
invariant amplitudes T (U,S) and in the primary quark distri-
butions in all available forms of factorization. Once again we
begin with a consideration of the invariant amplitudes T (U,S)

and then proceed to the quark distributions.

5.1 Resonance model for the primary quark–hadron
invariant amplitudes

The amplitudes T (U,S) can be introduced in a model-
dependent way only because QCD has not been solved in
the non-perturbative region. All such models should satisfy
several restrictions:

(i) The IR stability conditions in Eq. (12) and the UV sta-
bility conditions in Eqs. (20–23) should be respected, because
they guarantee integrability of the factorization convolutions.
We recall that the UV stability conditions derived in Sect. 2
depend on the UV-behavior of the factors regulating IR diver-
gences. Namely, Eqs. (14), (20), and (22) correspond to the
case (A), while Eqs. (15), (21), and (23) correspond to the
case (B). In the present paper we focus on the most UV-
divergent case (A), although our conclusions hold true for
the case (B) as well.

(ii) The invariant amplitudes should respect the optical
theorem, so they should have s-channel imaginary parts.

(iii) These amplitudes should guarantee the step-by-step
reductions from basic factorization to kT -factorization and
then to collinear factorization as described in Sect. 4.

The expressions for the unpolarized and spin-dependent
amplitudes with the longitudinal spin in Eq. (30) are much
alike, while the expression for the transverse spin amplitude
differs from them. Despite this difference, our model equally
stands for all spin-dependent amplitudes and quark distri-
butions, regardless of the spin orientation. To describe the
invariant primary quark–hadron amplitudes, we suggest a
model of the resonance type for T (U,S)

q :

T (U )
q (pk, k2)

= RU (k2)

((k − p)2 − M2
1 + ı�1)((k − p)2 − M2

2 + ı�2)

T (S)
q (pk, k2)

= RS(k2)

((k − p)2 − M2
3 + ı�3)((k − p)2 − M2

4 + ı�4)
(40)

where the RU,S(k2) are supposed to behave as RU,S(k2) ∼
(k2)1+η at small k2. We need at least two resonances to satisfy
the UV stability requirement of Eq. (14). Indeed, Eq. (40)
leads to χ = 1, while a model with one resonance corre-
sponds to χ = 0. Formally, Eq. (40) contains the independent
parameters M1,2,3,4 and �1,2,3,4 but we do not see a physical
reason forbidding us to identify T (U )

q and T (S)
q , which would

leave us with the parameters M1,2 and �1,2 only. In terms of
the Sudakov variables, the T (U,S)

q are

T (U )
q (wα, k2)

= RU (k2)

(wα + k2 − μ2
1 + ı�1)(wα + k2 − μ2

2 + ı�2)
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T (S)
q (wα, k2)

= RS(k2)

(wα + k2 − μ2
3 + ı�3)(wα + k2 − μ2

4 + ı�4)
, (41)

where k2 = −wαβ − k2⊥ and

μ2
j = M2

j − p2. (42)

We suggest that the values of μ2
j and � j should be within the

non-perturbative scale domain, with M2
j > � j . It is conve-

nient to write TU,S as the sum of two resonances:

T (U )
q (wα, k2)

= RU (k2)

(μ2
1 − μ2

2) − ı(�1 − �2)

×
[

1

(wα+k2−μ2
1+ı�1)

− 1

(wα+ k2−μ2
2+ı�2)

]
,

T (S)
q (wα, k2)

= RS(k2)

(μ2
3 − μ2

4) − ı(�3 − �4)

×
[

1

(wα+k2−μ2
3+ı�3)

− 1

(wα+ k2−μ2
4+ı�4)

]
.

(43)

It seems that specifying RU,S cannot be done unambiguously.
We postpone investigating this problem to the future, while
in the present paper we use RU,S defined as follows:

RU = λU

(
k2

k2 + μ2
U

)1+η

, RS = λS

(
k2

k2 + μ2
S

)1+η

,(44)

where λU,S and μ2
U,S, (μ2

U,S > 0) are independent parame-
ters, though we think that RU and RS could coincide, which
would diminish the number of free parameters. It is easy to
check now that the expressions for T (U )

q , T (S)
q introduced in

Eq. (41) obey the condition of IR stability in Eq. (12) with
arbitrary η. In contrast, the value of the UV parameter χ

(introduced in Eqs. (14) and (20) to guarantee UV stability)
is now fixed: χ = 1 in Eq. (41). Equations (25) and (41) are
suggested for invariant amplitudes T (U,S)

q in basic factoriza-
tion. Reducing basic factorization to kT -factorization con-
verts T (U,S)

q into new amplitudes T̃ (U,S)
q . They are obtained

from T (U,S)
q by integrating them with respect to α:

T̃ (r)
q (β, k2⊥) =

∫ αmax

0
dαT (r)(α, k2), (45)

where r = U, S. The upper limit of integration, αmax should
obey Eq. (34), so we choose

αmax ≈ k2⊥/(wβ). (46)

According to Eq. (34), k2 ≈ −k2⊥. The integration leads to the

following expression for T̃ ( j)
q (see Appendix D for details):

T̃ (U )
q (β, k2⊥) ≈ 1

2
RU (k2⊥)

×
[

1

k2⊥(1−β)/β−μ2
1+ı�1

+ 1

k2⊥(1−β)/β−μ2
2+ı�2

]

+�T̃ (U )
q ,

T̃ (S)
q (β, k2⊥) ≈ 1

2
RS(k

2⊥)

×
[

1

k2⊥(1−β)/β−μ2
3+ı�3

+ 1

k2⊥(1−β)/β−μ2
4+ı�4

]

+�T̃ (S)
q , (47)

where �T̃ (U )
q and �T̃ (S)

q are

�T̃ (U )
q = 1

(μ2
1−μ2

2)+ı(�1−�2)
ln

(
k2⊥+μ2

1−ı�1

k2⊥+μ2
2−ı�2

)
,

�T̃ (S)
q = 1

(μ2
3−μ2

4)+ı(�3−�4)
ln

(
k2⊥+μ2

3−ı�3

k2⊥+μ2
4−ı�4

)
. (48)

They depend on k⊥ very slowly and they can be neglected
at large k2⊥.

5.2 Primary quark distributions

The optical theorem relates the s-channel imaginary parts of
T (U,S) and T̃ (U,S) to the primary quark distributions 
U,S

in basic factorization and to unintegrated (or) quark distri-
butions �U,S in kT -factorization, respectively. So, applying
the optical theorem, we obtain the following expression for
the primary quark distribution 
r in basic factorization:


U (wα, k2) = 1

π

RU (k2)

(μ2
1 − μ2

2)

×
[

�1

(wα + k2 − μ2
1)

2 + �2
1

− �2

(wα + k2 − μ2
2)

2 + �2
2

]
,


S(wα, k2) = 1

π

RS(k2)

(μ2
3 − μ2

4)

×
[

�3

(wα + k2 − μ2
3)

2 + �2
3

− �4

(wα + k2 − μ2
4)

2 + �2
4

]
,

(49)

and a similar expression for the primary quark distribution
�U,S in kT -factorization:

�U (β, k2⊥) = 1

π
RU (k2⊥)

×
[

�1

(k2⊥(1−β)/β−μ2
1)2+�2

1

+ �2

(k2⊥(1−β)/β−μ2
2)2+�2

2

]
,
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�S(β, k2⊥) = 1

π
RS(k

2⊥)

×
[

�3

(k2⊥(1−β)/β−μ2
3)2+�2

3

+ �4

(k2⊥(1−β)/β−μ2
4)2+�2

4

]
.

(50)

Obviously, the expressions in Eqs. (49) and (50) are of
the Breit–Wigner type. Substituting Eq. (50) in Eq. (35) and
integrating over k2⊥, we arrive at the quark parton distribu-

tion D(col)
j in kT -factorization, where the non-perturbative

contributions i.e. the unintegrated parton distributions are
specified:

D(kT )
U (x, q2⊥) = 1

π

∫ 1

x

dβ

β

∫ r

0

dk2⊥
k2⊥

D(pert)
U

×(x/β, k2⊥/q2⊥)RU (k2⊥)

×
[

�1

(k2⊥(1 − β)/β − μ2
1)

2 + �2
1

+ �2

(k2⊥(1 − β)/β − μ2
2)

2 + �2
2

]
,

D(kT )
S (x, q2⊥) = 1

π

∫ 1

x

dβ

β

∫ r

0

dk2⊥
k2⊥

D(pert)
S (x/β, k2⊥/q2⊥)

RS(k
2⊥)

[
�3

(k2⊥(1 − β)/β − μ2
3)

2 + �2
3

+ �4

(k2⊥(1 − β)/β − μ2
4)

2 + �2
4

]
, (51)

where r is defined in Eq. (35). Let us consider the k⊥-
dependence in Eqs. (35) and (50) in more detail. Obviously,
the structures of the expressions for D(kT )

U and D(kT )
S (or �u

and �S) are quite similar, so we consider D(kT )
U only. Then,

the expression in the squared brackets in Eq. (35), i.e. �U

of Eq. (50), is symmetric with respect to the replacement
1 � 2. Each term in the parentheses has a peaked form, with
maximums at k2⊥ = μ2

1,2. The smaller �1,2 is, the sharper

the peaks are. We recall that RU,S ∼ (k2⊥)1+η at small k2⊥.
By definition, see Eq. (42), μ2

1,2 = M2
1,2 − p2, so they can

be either positive or negative, while k2⊥ cannot be negative.

In any case, both terms in �U and �S contribute to D(kT )
U,S ,

but the result of interference of the two peaks depends on
the values of the parameters. There are three particular cases
possible.
Case (i) both μ2

1 and μ2
2 are positive.

In this case both maximums are within the integration
region of Eq. (35) and interference of the two peaks generates
various forms of �U (β, k2⊥), ranging from the picture with
two isolated peaks to a kind of plateau, depending on the
values of �1,2.
Case (ii) μ2

1 > 0 and μ2
2 < 0 or vice versa.

Here the peak from the first term in Eq. (50) combines with
a tail of the contribution of the second term whose maximum
is beyond the integration region of Eq. (35). The resulting
picture has a resemblance to the dual model combining a
resonant and a constant term.
Case (iii) both μ2

1 and μ2
2 are negative.

The two maximums now are out of the integration region,
so tails of the peaks, taken by themselves, generate a form
slowly decreasing with the growth of k2⊥. However, this slope
is affected by the impact of RU . We recall that RU = 0 at
k2⊥ = 0.

5.3 Primary quark distributions in collinear factorization

Performing an integration over k2⊥ in Eq. (35), we arrive at

the parton distributions D(col)
j in collinear factorization. Pre-

suming that the parameter � j is small, we write the result
of the integration in the following form (see Appendix C for
details):

D(col)
U (x, q2⊥) ≈

∫ 1

x

dβ

β
D(pert)
U (x/β, q2⊥/μ2

1)φU (β, μ2
1)

+
∫ 1

x

dβ

β
D(pert)
U (x/β, q2⊥/μ2

2)φU (β, μ2
2), (52)

with

φU (β, μ2
1) ≈ 1

π

∫
�1

dk2⊥
k2⊥

RU (k2⊥)�1

(k2⊥(1 − β)/β − μ2
1)

2 + �2
1

,

φU (β, μ2
2) ≈ 1

π

∫
�2

dk2⊥
k2⊥

RU (k2⊥)�2

(k2⊥(1 − β)/β − μ2
2)

2 + �2
2

,

(53)

where the integration regions are �1 = �′
1

⋂[0, w] and
�1 = �′

2

⋂[0, w], with the subregions �′
1,�

′
2 being located

around the maximums of the peaks. Formally, both terms
in Eq. (53) contribute to φU at any signs of μ2

1, μ
2
2, but

in the limit of sharp peaks these contributions have differ-
ent weights. At μ2

1 > 0, μ2
2 > 0 the two terms contribute

equally:

φU ≈ RU (μ2
1β/(1 − β))/μ2

1 + RU (μ2
2β/(1 − β))/μ2

2

+ O(�1, �2). (54)

Mostly the first term contributes, when μ2
1 > 0, μ2

2 < 0:

φU ≈ RU (μ2
1β/(1 − β))/μ2

1 + O(�1), (55)

and vice versa. Finally, at μ2
1, μ

2
2 < 0 only the tails of the two

peaks contribute and therefore φU is small and flat compared
to the previous cases:

φU ≈ const. (56)
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(see Appendix E for details). When μ2
1 > 0, μ2

2 > 0

ϕU (ω,μ2) =
∫ 1

x

dβ

β
βω[E(ω,μ2, μ2

1)RU (μ2
1β/(1−β))μ−2

2

+E(ω,μ2, μ2
2)RU (μ2

2β/(1 − β))μ−2
2 ], (57)

RU (μ2
jβ/(1 − β))μ−2

j = λUβ. (58)

Combining Eqs. (57) and (58), integrating over β and remem-
bering that at small x the essential values of ω are small leads
to the following expression for ϕU (ω,μ2) (see Appendix E
for details):

ϕU (ω,μ2) =
∫ 1

x

dβ

β
βω+1

[
λU

μ2
1

E(ω,μ2, μ2
1)

+λU

μ2
1

E(ω,μ2, μ2
2)

]

≈ λU

μ2
1

E(ω,μ2, μ2
1) + λU

μ2
2

E(ω,μ2, μ2
2). (59)

6 Conclusion

In the present paper we have considered the quark–hadron
scattering amplitudes and distributions of polarized and
unpolarized quarks in hadrons in the framework of the fac-
torization concept where both amplitudes and distributions
are expressed through convolutions of the perturbative and
non-perturbative components. We began with considering the
quark–hadron amplitudes in basic factorization where the
integration over the momenta of the connecting partons runs
over the whole phase space, and we obtained the conditions
for the factorization convolution to be stable both in the IR
and the UV regions. Then we demonstrated how to reduce
basic factorization to KT - and collinear factorizations. We
suggested a resonance model for non-perturbative contribu-
tions to the unpolarized and spin-dependent parton–hadron
scattering amplitudes. This model is based on the following
simple argumentation: after emitting an active quark by a
hadron, the remaining colored quark–gluon state cannot be
stable and therefore it can be described by quasi-resonant
expressions. We needed at least two resonances in basic fac-
torization and this remained true when basic factorization
was reduced to KT -factorization. Applying the optical theo-
rem to the resonance model provided us first with the expres-
sions of the Breit–Wigner type for non-perturbative (primary)
contributions to the quark distributions in the basic and KT -
factorizations and then, after one more reduction, to the par-
ton distributions in collinear factorization. To conclude, let
us notice that the resonance model can also be used for the
analysis of the non-singlet components of the DIS structure
functions.
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Appendix A: Amplitude for the forward Compton
scattering off a gluon in the box approximation

We have

Mμνλρ = (tl tr )
e2αs

8π2 w

∫
dβ ′dα′dk′2⊥

×[M (1)
μνλρ + M (2)

μνλρ + M (3)
μνλρ] (A1)

M (1)
μνλρ = Tr[γν(q̂ + k̂′)γμk̂′γλ(k̂′ − k̂)γρ k̂′]

k′2k′2(q + k′)2(k′ − k)2 ,

M (2)
μνλρ = Tr[γν(q̂ + k̂′)γμk̂′γρ(k̂′ + k̂)γλk̂′]

k′2k′2(q + k′)2(k′ + k)2 ,

M (3)
μνλρ = Tr[γν(q̂+k̂′−k̂)γρ(k̂′−k̂)γμk̂′γλ(k̂′+q̂)]

k′2(q+k′)2(k′−k)2(q+k′−k)2 . (A2)

Appendix B: Projection operators for forward Compton
amplitudes

The conventional way of dealing with the forward Compton
scattering amplitude Aμν is, in the first place, to simplify their
tensor structure. To this end, Aμν is represented as an expan-
sion of Aμν into a series of simpler tensors, each multiplied
by an invariant amplitude. Such tensors are called projection
operators. Through the optical theorem the invariant ampli-
tudes are related to the DIS structure functions.

In the case of the unpolarized Compton scattering such an
expansion looks as follows:

Aμν = P(1)
μν A1 + P(2)

μν A2, (B1)

where

P(1)
μν = −gμν + qμqν/q

2, P(2)
μν = (1/pq)

(pμ − qμ(pq/q2))(pν − qν(pq/q2)) (B2)

are the projection operators and A1, A2 are invariant ampli-
tudes. According to the optical theorem

F1 = 1

π
�A1, F2 = 1

π
�A2. (B3)
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Similarly, for the polarized Compton scattering

Aμν = P(3)
μν A3 + P(4)

μν A4, (B4)

where

P(3)
μν = ıεμνλρMqλSρ, P(4)

μν

= ıεμνλρMqλ[Sρ − pρ(qS/qp)], (B5)

with M and S being the hadron mass and spin, respectively,
and A3,4 are spin-dependent invariant amplitudes. The opti-
cal theorem states that

g1 = 1

π
�A3, g2 = 1

π
�A4. (B6)

All operators P(n)
μν respect the electromagnetic current

conservation:qμP
(n)
μν = qν P

(n)
μν = 0. It is convenient to intro-

duce the longitudinal, S||, and transverse, S⊥, components of
the spin, so that S⊥ p = S⊥q = 0 and S||

ρ = pρ(qS/pq). In
such terms Eq. (B4) can be written as follows:

Aμν = ıεμνλρMqλ[S||
ρ A3 + S⊥

ρ (A3 + A4)]
≡ ıεμνλρMqλ[S||

ρ A
|| + S⊥

ρ A⊥]. (B7)

This expression is useful for practical attributing differ-
ent terms in the spin-dependent Aμν to the proper invariant
amplitudes. In the unpolarized case one can use the sim-
ple rule: expressions ∼ gμν contribute to A1, while expres-
sions ∼ pμ pν/pq form A2. In contrast, the gauge invariance
admits adding arbitrary terms ∼ qμ, qν .

Appendix C: Convolutions involving the Breit–Wigner
formula

Let us consider the following convolution:

F = 1

π

∫ ∞

−∞
dx f (x)

�

(x − x0)2 + �2 . (C1)

Replacing x by t , with t = (x − x0)/�, we convert Eq. (C1)
into

F = 1

π

∫ ∞

−∞
dt f (t� + x0)

�

t2 + 1
. (C2)

At small �, we can expand f (t� + x0) in the power series
and retain several terms:

f (t� + x0) = f (x0) + f ′(x0)t� + O(�2). (C3)

Substituting Eq. (C3) in (C2) and integrating (C2) yields

F = f (x0) + O(�). (C4)

The first term in Eq. (C4) corresponds to the well-known
representation of the δ-function:

1

π
lim
ε→0

ε

x2 + ε2 = δ(x). (C5)

Appendix D: Integration in Eq. (45)

A generic expression to integrate can be written as

T̃ =
∫ αmax

0

dα

(α − A)(α − B)
= 1

(A − B)

×
∫ αmax

0
dα

[
1

α − A
− 1

α − B

]
= 1

(A − B)

×
[

ln

(
αmax − A

αmax − B

)
− ln

(
A

B

)]
. (D1)

Assuming that αmax � A, B � |A−B| allows us to expand
the logarithms into the power series and retain the first terms
only, we have

T̃ ≈ 1

2

[
1

αmax − A
+ 1

αmax − B

]
− 1

(A − B)
ln (A/B) .

(D2)

We have written Eq. (D2) in the symmetrical form with
respect to A, B because Eq. (D1) has this feature.

Appendix E: Evolving the factorization scale in
collinear factorization

Using the Mellin transform, we can rewrite Eq. (37) as
follows:

D(col)(x, q2⊥) =
∫ ı∞

−ı∞
dω

2π ı
x−ωCU (ω)E(ω, q2, μ2)

×φ(ω,μ2), (E1)

where the primary quark distribution is fixed at the scale μ,
with μ2 < q2⊥. E(ω, q2⊥, μ2) is a generic notation for an
operator evolving the distribution φ(ω,μ2) from the factor-
ization scale μ2 to q2⊥, while C(ω) is responsible for the x
-evolution. Choosing a scale μ̃ such that μ2 < μ̃ < q2⊥ and
representing E(ω, q2⊥, μ2) as

E(ω, q2⊥, μ2) = E(ω, q2⊥, μ̃2)E(ω, μ̃2, μ2), (E2)

we bring D(col) to the conventional form

D(col)(x, q2⊥) =
∫ ı∞

−ı∞
dω

2π ı
x−ωCU (ω)E(ω, q2, μ̃2)

×ϕ(ω, μ̃2), (E3)

where

ϕ(ω, μ̃2) = E(ω, μ̃2, μ2)φ(β, μ2), (E4)

which corresponds to Eq. (39). Actually, ϕ(ω, μ̃2) is the
conventional parton distribution in the ω-space (momentum
space). It is fixed at an arbitrary scale μ̃2 and related to
the standard integrated distribution δq(x, μ̃2) by the Mellin
transform. The evolution operator E(ω, q2, μ2) is expressed
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in different terms, depending on the perturbative approach in
use. For instance, in LO DGLAP with fixed αs it is given by

E = exp[αsγ0(ω) ln(q2/μ2)], (E5)

with γ0 being the LO DGLAP anomalous dimension and
CF = 4/3. When in LO DGLAP αs is running and the stan-
dard parametrization αs = αs(k2⊥) is used in the Feynman
graphs, Eq. (E5) is changed,

E =
(
q2

μ2

)γ0/b

, (E6)

with b being the first coefficient of the β-function. The
parametrization αs = αs(k2⊥) should not be used at small
x (see Ref. [36]). When it is replaced by the appropriate
parametrization and when the total resummation of the lead-
ing logarithms is done, Eq. (E6) is replaced by

E = exp[h(ω) ln(q2/μ2)], (E7)

where h(ω) is a new anomalous dimension. It accounts for the
total resummation of the leading double-logarithmic contri-
butions and running QCD coupling effects (see Ref. [34,35]
and the overview [36] for details).
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