14 research outputs found
Optimized Two-Baseline Beta-Beam Experiment
We propose a realistic Beta-Beam experiment with four source ions and two
baselines for the best possible sensitivity to theta_{13}, CP violation and
mass hierarchy. Neutrinos from 18Ne and 6He with Lorentz boost gamma=350 are
detected in a 500 kton water Cerenkov detector at a distance L=650 km (first
oscillation peak) from the source. Neutrinos from 8B and 8Li are detected in a
50 kton magnetized iron detector at a distance L=7000 km (magic baseline) from
the source. Since the decay ring requires a tilt angle of 34.5 degrees to send
the beam to the magic baseline, the far end of the ring has a maximum depth of
d=2132 m for magnetic field strength of 8.3 T, if one demands that the fraction
of ions that decay along the straight sections of the racetrack geometry decay
ring (called livetime) is 0.3. We alleviate this problem by proposing to trade
reduction of the livetime of the decay ring with the increase in the boost
factor of the ions, such that the number of events at the detector remains
almost the same. This allows to substantially reduce the maximum depth of the
decay ring at the far end, without significantly compromising the sensitivity
of the experiment to the oscillation parameters. We take 8B and 8Li with
gamma=390 and 656 respectively, as these are the largest possible boost factors
possible with the envisaged upgrades of the SPS at CERN. This allows us to
reduce d of the decay ring by a factor of 1.7 for 8.3 T magnetic field.
Increase of magnetic field to 15 T would further reduce d to 738 m only. We
study the sensitivity reach of this two baseline two storage ring Beta-Beam
experiment, and compare it with the corresponding reach of the other proposed
facilities.Comment: 17 pages, 3 eps figures. Minor changes, matches version accepted in
JHE
Neutrino Probes of the Nature of Light Dark Matter
Dark matter particles gravitationally trapped inside the Sun may annihilate
into Standard Model particles, producing a flux of neutrinos. The prospects of
detecting these neutrinos in future multi-\kton{} neutrino detectors designed
for other physics searches are explored here. We study the capabilities of a
34/100 \kton{} liquid argon detector and a 100 \kton{} magnetized iron
calorimeter detector. These detectors are expected to determine the energy and
the direction of the incoming neutrino with unprecedented precision allowing
for tests of the dark matter nature at very low dark matter masses, in the
range of 5-50 GeV. By suppressing the atmospheric background with angular cuts,
these techniques would be sensitive to dark matter - nucleon spin dependent
cross sections at the fb level, reaching down to a few ab for the most
favorable annihilation channels and detector technology.Comment: Minor changes and clarifications, matches JCAP versio
Simulation of muon-induced neutral particle background for a shallow depth Iron Calorimeter detector
Physics at a future neutrino factory and super-beam facility
The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams, Laboratori Nazionali di Frascati, Rome, 21-26 June 2005) and NuFact06 (Ivine, CA, 24-30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second-generation super-beam experiments, beta-beam facilities and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide extremely intense muon beams and the physics potential of such beams is discussed in the final section of the report