66 research outputs found

    Genetics, recombination and clinical features of human rhinovirus species C (HRV-C) infections; interactions of HRV-C with other respiratory viruses

    Get PDF
    To estimate the frequency, molecular epidemiological and clinical associations of infection with the newly described species C variants of human rhinoviruses (HRV), 3243 diagnostic respiratory samples referred for diagnostic testing in Edinburgh were screened using a VP4-encoding region-based selective polymerase chain reaction (PCR) for HRV-C along with parallel PCR testing for 13 other respiratory viruses. HRV-C was the third most frequently detected behind respiratory syncytial virus (RSV) and adenovirus, with 141 infection episodes detected among 1885 subjects over 13 months (7.5%). Infections predominantly targeted the very young (median age 6–12 months; 80% of infections in those <2 years), occurred throughout the year but with peak incidence in early winter months. HRV-C was detected significantly more frequently among subjects with lower (LRT) and upper respiratory tract (URT) disease than controls without respiratory symptoms; HRV-C mono-infections were the second most frequently detected virus (behind RSV) in both disease presentations (6.9% and 7.8% of all cases respectively). HRV variants were classified by VP4/VP2 sequencing into 39 genotypically defined types, increasing the current total worldwide to 60. Through sequence comparisons of the 5′untranslated region (5′UTR), the majority grouped with species A (n = 96; 68%, described as HRV-Ca), the remainder forming a phylogenetically distinct 5′UTR group (HRV-Cc). Multiple and bidirectional recombination events between HRV-Ca and HRV-Cc variants and with HRV species A represents the most parsimonious explanation for their interspersed phylogeny relationships in the VP4/VP2-encoding region. No difference in age distribution, seasonality or disease associations was identified between HRV-Ca and HRV-Cc variants. HRV-C-infected subjects showed markedly reduced detection frequencies of RSV and other respiratory viruses, providing evidence for a major interfering effect of HRV-C on susceptibility to other respiratory virus infections. HRV-C's disease associations, its prevalence and evidence for interfering effects on other respiratory viruses mandates incorporation of rhinoviruses into future diagnostic virology screening

    Cyclin-Dependent Kinase 9 Activity Regulates Neutrophil Spontaneous Apoptosis

    Get PDF
    Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK) inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases

    Antimicrobial protein and Peptide concentrations and activity in human breast milk consumed by preterm infants at risk of late-onset neonatal sepsis

    Get PDF
    Objective: We investigated the levels and antimicrobial activity of antimicrobial proteins and peptides (AMPs) in breast milk consumed by preterm infants, and whether deficiencies of these factors were associated with late-onset neonatal sepsis (LOS), a bacterial infection that frequently occurs in preterm infants in the neonatal period. Study design: Breast milk from mothers of preterm infants (≤32 weeks gestation) was collected on days 7 (n = 88) and 21 (n = 77) postpartum. Concentrations of lactoferrin, LL-37, beta-defensins 1 and 2, and alpha-defensin 5 were measured by enzyme-linked immunosorbent assay. The antimicrobial activity of breast milk samples against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae was compared to the activity of infant formula, alone or supplemented with physiological levels of AMPs. Samples of breast milk fed to infants with and without subsequent LOS were compared for levels of AMPs and inhibition of bacterial growth. Results: Levels of most AMPs and antibacterial activity in preterm breast milk were higher at day 7 than at day 21. Lactoferrin was the only AMP that limited pathogen growth >50% when added to formula at a concentration equivalent to that present in breast milk. Levels of AMPs were similar in the breast milk fed to infants with and without LOS, however, infants who developed LOS consumed significantly less breast milk and lower doses of milk AMPs than those who were free from LOS. Conclusions: The concentrations of lactoferrin and defensins in preterm breast milk have antimicrobial activity against common neonatal pathogens

    First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole

    Get PDF
    When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux ratio 10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 ± 0.7) × 109 Me. Our radiowave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible

    First M87 Event Horizon Telescope Results. II. Array and Instrumentation

    Get PDF
    The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s−1, exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
    corecore