2,093 research outputs found
The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM
Recent studies have indicated that ocean circulation damps the atmospheric energy transport response to hemispherically differential energy perturbations, thereby muting the shifts of the Inter-Tropical Convergence Zone (ITCZ). Here, we focus on the potential role of Ekman heat transport in modulating this atmospheric response. An idealized representation of Ekman-driven heat transport (FE) is included in an aquaplanet slab ocean coupled to a gray radiation atmospheric model. We first alter the strength of FE in the control climate by tuning the gross stability of the Ekman layer SE. For a wide range of FE, the total poleward transport of energy remains nearly unchanged, but the ocean transports an increasing share for larger SE. The control climate is then perturbed by adding surface cooling in the Southern Hemisphere and warming in the Northern Hemisphere. The Ekman coupling damps the atmospheric energy transport response, as in previous coupled model experiments with full ocean dynamics. The ratio of the changes in Ekman to atmospheric energy transport is determined by the ratio of the gross stability in the Ekman layer to the atmosphere in the control climate, and is insensitive to the amplitude and location of forcing. We find that an unrealistically large SE is needed to reproduce the ratio of the changes in cross-equatorial oceanic to atmospheric energy transport in fully coupled models. The limited damping effect of Ekman transport highlights the need to examine the roles of deep circulation and subtropical gyres, as well as ocean heat uptake processes
Recommended from our members
Convective self-aggregation in numerical simulations: a review
Organized convection in the Tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is “self-aggregation”, in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change
'Word from the street' : when non-electoral representative claims meet electoral representation in the United Kingdom
Taking the specific case of street protests in the UK – the ‘word from the street’– this article examines recent (re)conceptualizations of political representation, most particularly Saward’s notion of ‘representative claim’. The specific example of nonelectoral claims articulated by protestors and demonstrators in the UK is used to illustrate: the processes of making, constituting, evaluating and accepting claims for and by constituencies and audiences; and the continuing distinctiveness of claims based upon electoral representation. Two basic questions structure the analysis: first, why would the political representative claims of elected representatives trump the nonelectoral claims of mass demonstrators and, second, in what ways does the ‘perceived legitimacy’ of the former differ from the latter
Recommended from our members
Poleward energy transport: is the standard definition physically relevant at all time scales?
Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been
the subject of many studies. In the atmosphere, the transport is affected by “eddies” and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^15 W
= 1 PW) in the poleward heat transport. These fluctuations are referred to as “extensive”, for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations
Recommended from our members
Clouds, circulation and climate sensitivity
Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific
questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks
Recommended from our members
The Transformation of Citizenship in Complex Societies
The main purpose of this paper is to propose a theoretical framework for understanding the transformation of citizenship in complex societies. To this end, the paper is divided into six sections. The first section elucidates the main reasons for the renaissance of the concept of citizenship in the contemporary social sciences. The second section argues that a comprehensive sociological theory of citizenship needs to account for the importance of four dimensions: the content, the type, the conditions, and the arrangements of citizenship. The third section suggests that in order to understand the sociological significance of T.H. Marshall’s account of legal, political, and social rights we need to explore the particular historical contexts in which citizenship rights became ideologically and institutionally relevant. The fourth section offers some critical reflections on the main shortcomings of the Marshallian approach to citizenship. The fifth section draws an analogy between the transformation of social movements and the transformation of citizenship. The sixth section sheds light on the fact that contemporary citizenship studies are confronted with a curious paradox: the differentiation of citizenship has led to both the relativistic impoverishment and the pluralistic enrichment of contemporary accounts of ‘the social’ and ‘the political’.The paper concludes by arguing that, under conditions of late modernity, the state’s capacity to gain political legitimacy increasingly depends on its ability to confront the normative challenges posed by the ubiquity of societal complexity
Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection
Intense tropical rainfall occurs in a narrow belt near the equator, called the inter-tropical convergence zone (ITCZ). In the past decade, the atmospheric energy budget has been used to explain changes in the zonal-mean ITCZ position. The energetics framework provides a mechanism for extratropics-to-tropics teleconnections, which have been postulated from paleoclimate records. In atmosphere models coupled with a motionless slab ocean, the ITCZ shifts toward the warmed hemisphere in order for the Hadley circulation to transport energy toward the colder hemisphere. However, recent studies using fully coupled models show that tropical rainfall can be rather insensitive to extratropical forcing when ocean dynamics is included. Here, we explore the effect of meridional Ekman heat advection while neglecting the upwelling effect on the ITCZ response to prescribed extratropical thermal forcing. The tropical component of Ekman advection is a negative feedback that partially compensates the prescribed forcing, whereas the extratropical component is a positive feedback that amplifies the prescribed forcing. Overall, the tropical negative feedback dominates over the extratropical positive feedback. Thus, including Ekman advection reduces the need for atmospheric energy transport, dampening the ITCZ response. We propose to build a hierarchy of ocean models to systematically explore the full dynamical response of the coupled climate system
Caring for quality of care: symbolic violence and the bureaucracies of audit.
BACKGROUND: This article considers the moral notion of care in the context of Quality of Care discourses. Whilst care has clear normative implications for the delivery of health care it is less clear how Quality of Care, something that is centrally involved in the governance of UK health care, relates to practice. DISCUSSION: This paper presents a social and ethical analysis of Quality of Care in the light of the moral notion of care and Bourdieu's conception of symbolic violence. We argue that Quality of Care bureaucracies show significant potential for symbolic violence or the domination of practice and health care professionals. This generates problematic, and unintended, consequences that can displace the goals of practice. SUMMARY: Quality of Care bureaucracies may have unintended consequences for the practice of health care. Consistent with feminist conceptions of care, Quality of Care 'audits' should be reconfigured so as to offer a more nuanced and responsive form of evaluation
Recommended from our members
Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall
Sahelian summer rainfall, controlled by the West African
monsoon, exhibited large-amplitude multidecadal variability
during the twentieth century. Particularly important was the
severe drought of the 1970s and 1980s, which had widespread
impacts1–6. Research into the causes of this drought has
identified anthropogenic aerosol forcing3,4,7 and changes in
sea surface temperatures (SSTs; refs 1,2,6,8–11) as the most
important drivers. Since the 1980s, there has been some
recovery of Sahel rainfall amounts2–6,11–14, although not to
the pre-drought levels of the 1940s and 1950s. Here we
report on experiments with the atmospheric component of a
state-of-the-art global climate model to identify the causes
of this recovery. Our results suggest that the direct influence
of higher levels of greenhouse gases in the atmosphere
was the main cause, with an additional role for changes
in anthropogenic aerosol precursor emissions. We find that
recent changes in SSTs, although substantial, did not have a
significant impact on the recovery. The simulated response
to anthropogenic greenhouse-gas and aerosol forcing is
consistent with a multivariate fingerprint of the observed
recovery, raising confidence in our findings. Although robust
predictions are not yet possible, our results suggest that the
recent recovery in Sahel rainfall amounts is most likely to be
sustained or amplified in the near term
Enzymatic reduction of azo and indigoid compounds
A customer- and environment-friendly method for the decolorization azo dyes was developed. Azoreductases could be used both to bleach hair dyed with azo dyes and to reduce dyes in vat dyeing of textiles. A new reduced nicotinamide adenine dinucleotide-dependent azoreductase of Bacillus cereus, which showed high potential for reduction of these dyes, was purified using a combination of ammonium sulfate precipitation and chromatography and had a molecular mass of 21.5 kDa. The optimum pH of the azoreductase depended on the substrate and was within the range of pH 6 to 7, while the maximum temperature was reached at 40°C. Oxygen was shown to be an alternative electron acceptor to azo compounds and must therefore be excluded during enzymatic dye reduction. Biotransformation of the azo dyes Flame Orange and Ruby Red was studied in more detail using UV-visible spectroscopy, high-performance liquid chromatography, and mass spectrometry (MS). Reduction of the azo bonds leads to cleavage of the dyes resulting in the cleavage product 2-amino-1,3 dimethylimidazolium and N∼1∼,N∼1∼-dimethyl-1,4-benzenediamine for Ruby Red, while only the first was detected for Flame Orange because of MS instability of the expected 1,4-benzenediamine. The azoreductase was also found to reduce vat dyes like Indigo Carmine (C.I. Acid Blue 74). Hydrogen peroxide (H2O2) as an oxidizing agent was used to reoxidize the dye into the initial form. The reduction and oxidation mechanism of Indigo Carmine was studied using UV-visible spectroscopy
- …
