46 research outputs found
Mesenchymal stromal cellsâ therapy for polyglutamine disorders: where do we stand and where should we go?
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by the expansion of the cytosine-adenine-guanine (CAG) repeat. This mutation encodes extended glutamine (Q) tract in the disease protein, resulting in the alteration of its conformation/physiological role and in the formation of toxic fragments/aggregates of the protein. This group of heterogeneous disorders shares common molecular mechanisms, which opens the possibility to develop a pan therapeutic approach. Vast efforts have been made to develop strategies to alleviate disease symptoms. Nonetheless, there is still no therapy that can cure or effectively delay disease progression of any of these disorders. Mesenchymal stromal cells (MSC) are promising tools for the treatment of polyQ disorders, promoting protection, tissue regeneration, and/or modulation of the immune system in animal models. Accordingly, data collected from clinical trials have so far demonstrated that transplantation of MSC is safe and delays the progression of some polyQ disorders for some time. However, to achieve sustained phenotypic amelioration in clinics, several treatments may be necessary. Therefore, efforts to develop new strategies to improve MSC's therapeutic outcomes have been emerging. In this review article, we discuss the current treatments and strategies used to reduce polyQ symptoms and major pre-clinical and clinical achievements obtained with MSC transplantation as well as remaining flaws that need to be overcome. The requirement to cross the blood-brain-barrier (BBB), together with a short rate of cell engraftment in the lesioned area and low survival of MSC in a pathophysiological context upon transplantation may contribute to the transient therapeutic effects. We also review methods like pre-conditioning or genetic engineering of MSC that can be used to increase MSC survival in vivo, cellular-free approaches-i.e., MSC-conditioned medium (CM) or MSC-derived extracellular vesicles (EVs) as a way of possibly replacing the use of MSC and methods required to standardize the potential of MSC/MSC-derived products. These are fundamental questions that need to be addressed to obtain maximum MSC performance in polyQ diseases and therefore increase clinical benefits.Portuguese Foundation for Science and Technology: SFRH/BD/148877/2019; CENTRO01-0145-FEDER-000008
CENTRO-01-0145FEDER-022095
POCI-01-0145-FEDER-016719
POCI-01-0145-FEDER-029716
POCI01-0145-FEDER-016807
POCI-01-0145-FEDER016390
UID4950/2020
CENTRO-01-0145-FEDER-022118info:eu-repo/semantics/publishedVersio
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS
Counting and enumerating partial Latin rectangles by means of computer algebra systems and CSP solvers
This paper provides an in-depth analysis of how computer algebra systems and CSP solvers can be used to deal with the problem of enumerating and distributing the set of partial Latin rectangles based on symbols according to their weight, shape, type or structure. The computation of Hilbert functions and triangular systems of radical ideals enables us to solve this problem for all . As a by-product, explicit formulas are determined for the number of partial Latin rectangles of weight up to six. Further, in order to illustrate the effectiveness of the computational method, we focus on the enumeration of three subsets: (a) non-compressible and regular, (b) totally symmetric, and (c) totally conjugate orthogonal partial Latin squares. In particular, the former enables us to enumerate the set of seminets of point rank up to eight and to prove the existence of two new configurations of point rank eight. Finally, as an illustrative application, it is also exposed a method to construct totally symmetric partial Latin squares that gives rise, under certain conditions, to new families of Lie partial quasigroup rings