64 research outputs found

    Return to play with hypertrophic cardiomyopathy: are we moving too fast? A critical review.

    Get PDF
    The diagnosis of a potentially lethal cardiovascular disease in a young athlete presents a complex dilemma regarding athlete safety, patient autonomy, team or institutional risk tolerance and medical decision-making. Consensus cardiology recommendations previously supported the 'blanket' disqualification of athletes with hypertrophic cardiomyopathy (HCM) from competitive sport. More recently, epidemiological studies examining the relative contribution of HCM as a cause of sudden cardiac death (SCD) in young athletes and reports from small cohorts of older athletes with HCM that continue to exercise have fueled debate whether it is safe to play with HCM. Shared decision-making is endorsed within the sports cardiology community in which athletes can make an informed decision about treatment options and potentially elect to continue competitive sports participation. This review critically examines the available evidence relevant to sports eligibility decisions in young athletes diagnosed with HCM. Histopathologically, HCM presents an unstable myocardial substrate that is vulnerable to ventricular tachyarrhythmias during exercise. Studies support that young age and intense competitive sports are risk factors for SCD in patients with HCM. We provide an estimate of annual mortality based on our understanding of disease prevalence and the incidence of HCM-related SCD in different athlete populations. Adolescent and young adult male athletes and athletes participating in a higher risk sport such as basketball, soccer and American football exhibit a greater risk. This review explores the potential harms and benefits of sports disqualification in athletes with HCM and details the challenges and limitations of shared decision-making when all parties may not agree

    In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginger is one of the most important spice crops and traditionally has been used as medicinal plant in Bangladesh. The present work is aimed to find out antioxidant and anticancer activities of two Bangladeshi ginger varieties (Fulbaria and Syedpuri) at young age grown under ambient (400 μmol/mol) and elevated (800 μmol/mol) CO<sub>2 </sub>concentrations against two human breast cancer cell lines (MCF-7 and MDA-MB-231).</p> <p>Methods</p> <p>The effects of ginger on MCF-7 and MDA-MB-231 cell lines were determined using TBA (thiobarbituric acid) and MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide] assays. Reversed-phase HPLC was used to assay flavonoids composition among Fulbaria and Syedpuri ginger varieties grown under increasing CO<sub>2 </sub>concentration from 400 to 800 μmol/mol.</p> <p>Results</p> <p>Antioxidant activities in both varieties found increased significantly (P ≤ 0.05) with increasing CO<sub>2 </sub>concentration from 400 to 800 μmol/mol. High antioxidant activities were observed in the rhizomes of Syedpuri grown under elevated CO<sub>2 </sub>concentration. The results showed that enriched ginger extract (rhizomes) exhibited the highest anticancer activity on MCF-7 cancer cells with IC<sub>50 </sub>values of 34.8 and 25.7 μg/ml for Fulbaria and Syedpuri respectively. IC<sub>50 </sub>values for MDA-MB-231 exhibition were 32.53 and 30.20 μg/ml for rhizomes extract of Fulbaria and Syedpuri accordingly.</p> <p>Conclusions</p> <p>Fulbaria and Syedpuri possess antioxidant and anticancer properties especially when grown under elevated CO<sub>2 </sub>concentration. The use of ginger grown under elevated CO<sub>2 </sub>concentration may have potential in the treatment and prevention of cancer.</p

    Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment

    Get PDF
    Background: Many bacteria undergo transitions between environments with differing O2 availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O2 availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process. Methods and Findings: Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O2 sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR. Conclusion: Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O2 combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O2 sensor FNR during transition from anaerobic to micro-aerobic conditions

    The Female Athlete's Heart: Facts and Fallacies.

    Get PDF
    Purpose of the review For many years, competitive sport has been dominated by men. Recent times have witnessed a significant increase in women participating in elite sports. As most studies investigated male athletes, with few reports on female counterparts, it is crucial to have a better understanding on physiological cardiac adaptation to exercise in female athletes, to distinguish normal phenotypes from potentially fatal cardiac diseases. This review reports on cardiac adaptation to exercise in females. Recent findings Recent studies show that electrical, structural, and functional cardiac changes due to physiological adaptation to exercise differ in male and female athletes. Women tend to exhibit eccentric hypertrophy, and while concentric hypertrophy or concentric remodeling may be a normal finding in male athletes, it should be evaluated carefully in female athletes as it may be a sign of pathology. Although few studies on veteran female athletes are available, women seem to be affected by atrial fibrillation, coronary atherosclerosis, and myocardial fibrosis less than male counterparts. Summary Males and females exhibit many biological, anatomical, and hormonal differences, and cardiac adaptation to exercise is no exception. The increasing participation of women in sports should stimulate the scientific community to develop large, longitudinal studies aimed at a better understanding of cardiac adaptation to exercise in female athletes

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Autonomous Magnetic Microrobots by Navigating Gates for Multiple Biomolecules Delivery

    No full text
    The precise delivery of biofunctionalized matters is of great interest from the fundamental and applied viewpoints. In spite of significant progress achieved during the last decade, a parallel and automated isolation and manipulation of rare analyte, and their simultaneous on-chip separation and trapping, still remain challenging. Here, a universal micromagnet junction for self-navigating gates of microrobotic particles to deliver the biomolecules to specific sites using a remote magnetic field is described. In the proposed concept, the nonmagnetic gap between the lithographically defined donor and acceptor micromagnets creates a crucial energy barrier to restrict particle gating. It is shown that by carefully designing the geometry of the junctions, it becomes possible to deliver multiple protein-functionalized carriers in high resolution, as well as MCF-7 and THP-1 cells from the mixture, with high fidelity and trap them in individual apartments. Integration of such junctions with magnetophoretic circuitry elements could lead to novel platforms without retrieving for the synchronous digital manipulation of particles/biomolecules in microfluidic multiplex arrays for next-generation biochips

    Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation.

    No full text
    Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively
    corecore