21 research outputs found

    Exploring the effects of telehealth on medical human resources supply: a qualitative case study in remote regions

    Get PDF
    BACKGROUND: The availability of medical human resource supply is a growing concern for rural and remote communities in many countries. In the last decade, various telehealth experiences in Canada have highlighted the potential impact of this technology on professional practice. The purpose of this study was to explore physicians' and managers' perceptions regarding the potential of telehealth to support recruitment and retention of physicians in remote and rural regions. METHODS: A case study in Eastern Quebec was performed to explore this complex phenomenon. The analytical framework was based on two literature reviews and a Delphi study. Data were collected from semi-structured interviews with 41 physicians and 22 managers. Transcripts were produced and interview content was coded independently by two judges and validated by an expert panel. RESULTS: Interviews have highlighted the potential impact of telehealth on several factors influencing the recruitment and retention of physicians in rural and remote regions. The potential effects of telehealth on physicians' choice of practice location could be seen at the professional, organizational, educational and individual levels. For instance, telehealth could improve work satisfaction by allowing a regional on-call duty system and a better follow-up of patients. However, there are also certain limits related to telehealth, such as the fear that it would eventually replace all continuing medical education activities and onsite specialists in remoteregions. CONCLUSION: Telehealth is likely to have an impact on several factors related to medical workforce supply in remote and rural regions. However, the expected benefits will materialize if and only if this technology is properly integrated into organizations as a support to professional practice

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Lösungsgleichgewichte von festen und flüssigen Stoffen in Flüssigkeiten

    No full text
    corecore