113 research outputs found

    Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells

    Get PDF
    The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.111311Ysciescopu

    Enhancement drugs: are there limits to what we should enhance and why?

    Get PDF
    Substances, such as alcohol, opiates and cannabis, have been used by humans for millennia. Today, a much wider range of substances are used for a range of purposes, including the enhancement of performance during university studies, sexual experiences, sports, exercise, at celebrations, socializing and the experience of art and music. Substance use is also associated with a range of harmful effects to the individual and society as a whole. Prohibitions, regulation, prevention and treatment have all been used to protect against this harm. In this commentary, it is argued that public health interventions should target relevant harms and not to evaluate which aspects of human endeavors and experiences should be enhanced and which should not. It is argued that interventions should directly target the harmful effects, using the best available evidence. Two examples are given of substances that may be altered to prevent serious harm - one for alcohol and one for cannabis. In the case of alcohol, the addition of dissolved oxygen could reduce both the risk of accidents and the risk of liver damage associated with alcohol consumption. In the case of cannabis, there is strong indication that the reduction of content Δ-tetrahydrocannabinol and the increase of cannabidiol could reduce the risk of psychoses and the addiction associated with its use. The aim of this article is to show that responsible regulation should not necessarily be restricted to preventing the use and/or (in the case of alcohol) a reduction in the amounts and frequency of its use, but should also aim to include a range of other strategies that could reduce the burden of illness associated with illicit substance use

    How to avoid complications of distraction osteogenesis for first brachymetatarsia

    Get PDF
    Background and purpose Distraction osteogenesis may be used for the treatment of brachymetatarsia. However, few reports have been published on first metatarsal lengthening by this method. We evaluated the complications of distraction osteogenesis for first brachymetatarsia and here we provide a solution

    Influence of a Conductive Material and Different Anaerobic Inocula on Biochemical Methane Potential of Substrates from Alcoholic Beverage Production

    Get PDF
    The impact of a conductive material as powdered activated carbon (PAC) on the biochemical methane potential of whisky pot ale (PA) and brewery spent yeast (SY) was investigated. The test was carried out with three different types of anaerobic inocula: manure inoculum (MI), sewage sludge (SS) and granular sludge (GR). Brewery spent yeast produced partial (in sewage and granular sludge) and total (in manure inoculum) methanogenesis inhibition due to the toxicity of some of its constituents (hops extract). The inhibition was overcome by the supplementation of PAC, that improved significantly the anaerobic digestion process for SY, allowing to reach biochemical methane potential values between 657-699 L CH4 kg-1 VS and it reduced redox potential from 369 to 398 mV. The activated carbon did not improve the methane yields from whisky PA since microorganisms did not have difficulties to process this substrate; in fact, the redox potential slightly increased from 355 to 330 mV

    Revealing the nature of morphological changes in carbon nanotube-polymer saturable absorber under high-power laser irradiation

    Get PDF
    Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJ·cm−2. We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers

    Modifiable risk factors associated with bone deficits in childhood cancer survivors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the prevalence and severity of bone deficits in a cohort of childhood cancer survivors (CCS) compared to a healthy sibling control group, and the modifiable factors associated with bone deficits in CCS.</p> <p>Methods</p> <p>Cross-sectional study of bone health in 319 CCS and 208 healthy sibling controls. Bone mineral density (BMD) was measured by dual-energy x-ray absorptiometry (DXA). Generalized estimating equations were used to compare measures between CCS and controls. Among CCS, multivariable logistic regression was used to evaluate odds ratios for BMD Z-score ≤ -1.</p> <p>Results</p> <p>All subjects were younger than 18 years of age. Average time since treatment was 10.1 years (range 4.3 - 17.8 years). CCS were 3.3 times more likely to have whole body BMD Z-score ≤ -1 than controls (95% CI: 1.4-7.8; p = 0.007) and 1.7 times more likely to have lumbar spine BMD Z-score ≤ -1 than controls (95% CI: 1.0-2.7; p = 0.03). Among CCS, hypogonadism, lower lean body mass, higher daily television/computer screen time, lower physical activity, and higher inflammatory marker IL-6, increased the odds of having a BMD Z-score ≤ -1.</p> <p>Conclusions</p> <p>CCS, less than 18 years of age, have bone deficits compared to a healthy control group. Sedentary lifestyle and inflammation may play a role in bone deficits in CCS. Counseling CCS and their caretakers on decreasing television/computer screen time and increasing activity may improve bone health.</p

    The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling

    Get PDF
    NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling.These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone

    Campylobacter jejuni transcriptome changes during loss of culturability in water

    Get PDF
    Background: Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results: We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions: Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression

    Ingestion of oxygenated water enhances lactate clearance kinetics in trained runners

    Full text link
    Abstract Background Drinks with higher dissolved oxygen concentrations have in recent times gained popularity as a potential ergogenic aid, despite a lack of evidence regarding their efficacy. The aim of this study was to assess effects of ingestion of an oxygen supplement (OS) on exercise performance and post-exercise recovery in a group of trained runners. Methods Trained male runners (n = 25, mean ± SD; age 23 ± 6 years, mass 70 ± 9 kg, BMI 21.9 ± 2.7 kg.m−2 VO2max 64 ± 6mL.kg−1.min−1), completed a randomised double blinded, crossover study to assess the effect of ingestion of OS solution on exercise performance and recovery. Trials consisted of a 30min rest period, 5min warm-up, a 5000m treadmill time-trial, and a 30min passive recovery. Participants ingested 6x15mL of either OS or a taste matched placebo during the trials (3 during the rest phase, 1 during exercise and 2 during the recovery). Muscle tissue O2 saturation was measured via near infrared spectroscopy. Blood lactate concentrations were measured prior to, mid-way and directly after the finish of the 5000m time trials and every 3-min during the post-exercise recovery. Results Ingestion of OS did not improve exercise performance. No significant differences were observed for muscle tissue O2 saturation at any time-points. However, lactate clearance was significantly improved during recovery in the OS trials. Both AUC (109 ± 32 vs. 123 ± 38 mmol.min, P < 0.05, d = 0.40) and lactate half-life (λ) (1127 ± 272 vs. 1223 ± 334 s, P < 0.05, d = 0.32) were significantly reduced. Conclusions Despite no evidence of improved exercise performance, ingestion of OS did enhance post-exercise recovery via increased lactate clearance

    Live Recombinant Salmonella Typhi Vaccines Constructed to Investigate the Role of rpoS in Eliciting Immunity to a Heterologous Antigen

    Get PDF
    We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS+ strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoS− strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts
    corecore