1,722 research outputs found
On the role of magnetic reconnection in jet/accretion disk systems
The most accepted model for jet production is based on the
magneto-centrifugal acceleration out off an accretion disk that surrounds the
central source (Blandford & Payne, 1982). This scenario, however, does not
explain, e.g., the quasi-periodic ejection phenomena often observed in
different astrophysical jet classes. de Gouveia Dal Pino & Lazarian (2005)
(hereafter GDPL) have proposed that the large scale superluminal ejections
observed in microquasars during radio flare events could be produced by violent
magnetic reconnection (MR) episodes. Here, we extend this model to other
accretion disk systems, namely: active galactic nuclei (AGNs) and young stellar
objects (YSOs), and also discuss its role on jet heating and particle
acceleration.Comment: To be published in the IAU Highlights of Astronomy, Volume 15, XXVII
IAU General Assembly, August 2009, Ian F. Corbett et al., eds., 201
Interactive models of communication at the nanoscale using nanoparticles that talk to one another
[EN] 'Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating.A. L.-L. is grateful to 'La Caixa' Banking Foundation for his PhD fellowship. We wish to thank the Spanish Government (MINECO Projects MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged.Llopis-Lorente, A.; DĂez, P.; SĂĄnchez, A.; Marcos MartĂnez, MD.; SancenĂłn Galarza, F.; MartĂnez-Ruiz, P.; Villalonga, R.... (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications. 8:1-7. https://doi.org/10.1038/ncomms15511S178Tseng, R., Huang, J., Ouyang, J., Kaner, R. & Yang, Y. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 5, 1077â1080 (2005).Liu, R. & Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133, 20064â20067 (2011).Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).Tarn, D. et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res. 46, 792â801 (2013).Kline, T. & Paxton, W. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 117, 754â756 (2005).Akyildiz, I. F., Brunetti, F. & BlĂĄzquez, C. Nanonetworks: a new communication paradigm. Comput. Netw. 52, 2260â2279 (2008).Suda, T., Moore, M., Nakano, T., Egashira, R. & Enomoto, A. Exploratory research on molecular communication between nanomachines. Nat. Comput. 25, 1â30 (2005).Malak, D. & Akan, O. B. Molecular communication nanonetworks inside human body. Nano Commun. Netw. 3, 19â35 (2012).Akyildiz, I. F., Jornet, J. M. & Pierobon, M. Nanonetworks: a new frontier in communications. Commun. ACM 54, 84â89 (2011).Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V. & Shuai, J. Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11, 135â148 (2012).Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319â346 (2005).Dickschat, J. S. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343â369 (2010).KerĂ©nyi, Ă., Bihary, D., Venturi, V. & Pongor, S. Stability of multispecies bacterial communities: signaling networks may stabilize microbiomes. PLoS ONE 8, e57947 (2013).Gotti, C. & Clementi, F. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363â396 (2004).Betke, K. M., Wells, C. A. & Hamm, H. E. GPCR mediated regulation of synaptic transmission. Prog. Neurobiol. 96, 304â321 (2012).Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368â372 (2011).Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455â468 (2012).Ball, P. Chemistry meets computing. Nature 406, 118â120 (2000).de Silva, A. P. & McClenaghan, N. D. Molecular-Scale Logic Gates. Chem. Eur. J. 10, 574â586 (2004).Condon, A. Automata make antisense. Nature 429, 351â352 (2004).Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585â1588 (2006).Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831â834 (2012).Angelos, S., Yang, Y. W., Khashab, N. M., Stoddart, J. F. & Zink, J. I. Dual-controlled nanoparticles exhibiting AND logic. J. Am. Chem. Soc. 131, 11344â11346 (2009).Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603â7609 (2013).Lee, J. W. & Klajn, R. Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2 . Chem. Commun. 51, 2036â2039 (2015).Liu, D. et al. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed. 50, 4103â4107 (2011).Chitode, J. S. Communication Theory Technical Publications (2010).Wood, J. T. Communication in Our Lives Wadsworth (2009).Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J. & Zink, J. I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc. 135, 14000â14003 (2013).Baeza, A., Guisasola, E., Ruiz-HernĂĄndez, E. & Vallet-RegĂ, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517â524 (2012).Zhang, Z. et al. Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 using DNA or molecular biomarkers as triggering stimuli. ACS Nano 7, 8455â8468 (2013).Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504â1534 (2012).Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590â2605 (2012).Coll, C., Bernardos, A., MartĂnez-Måñez, R. & SancenĂłn, F. Gated silica mesoporous supports for controlled release and signaling applications. Acc. Chem. Res. 46, 339â349 (2013).Aznar, E. et al. Gated materials for on-command release of guest molecules. Chem. Rev. 116, 561â718 (2016).DĂez, P. et al. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136, 9116â9123 (2014).Villalonga, R. et al. Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. Chem. Eur. J. 19, 7889â7894 (2013).Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S. & Donkor, K. K. Determination of thermodynamic pKa values of benzimidazole and benzimidazole derivatives by capillary electrophoresis. J. Sep. Sci. 32, 1087â1095 (2009).Sheffner, A. L. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-L-cysteine. Ann. N. Y. Acad. Sci. 106, 298â310 (1963).Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55â75 (1951).Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature 241, 20â22 (1973).Yousef, F. O., Zughul, M. B. & Badwan, A. A. The modes of complexation of benzimidazole with aqueous ÎČ-cyclodextrin explored by phase solubility, potentiometric titration, 1H-NMR and molecular modeling studies. J. Incl. Phenom. Macrocycl. Chem. 57, 519â523 (2007).SĂĄnchez, A., DĂez, P., MartĂnez-RuĂz, P., Villalonga, R. & PingarrĂłn, J. M. Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochem. Commun. 30, 51â54 (2013).Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. & Koucheryavy, Y. The internet of Bio-Nano things. IEEE Commun. Mag. 53, 32â40 (2015).SancenĂłn, F., Pascual, L., Oroval, M., Aznar, E. & MartĂnez-Måñez, R. Gated silica mesoporous materials in sensing applications. ChemistryOpen 4, 418â437 (2015).Akyildiz, I. & Jornet, J. The Internet of nano-things. IEEE Wirel. Commun. 17, 58â63 (2010).GimĂ©nez, C. et al. Towards chemical communication between gated nanoparticles. Angew. Chem. Int. Ed. 53, 12629â12633 (2014).Davis, B. G., Lloyd, R. C. & Jones, J. B. Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J. Org. Chem. 63, 9614â9615 (1998)
PGB pair production at LHC and ILC as a probe of the topcolor-assisted technicolor models
The topcolor-assisted technicolor (TC2) model predicts some light pseudo
goldstone bosons (PGBs), which may be accessible at the LHC or ILC. In this
work we study the pair productions of the charged or neutral PGBs at the LHC
and ILC. For the productions at the LHC we consider the processes proceeding
through gluon-gluon fusion and quark-antiquark annihilation, while for the
productions at the ILC we consider both the electron-positron collision and the
photon-photon collision. We find that in a large part of parameter space the
production cross sections at both colliders can be quite large compared with
the low standard model backgrounds. Therefore, in future experiments these
productions may be detectable and allow for probing TC2 model.Comment: 26 pages, 16 figures. slight changes in the text; notations for
curves changed; references adde
An introduction to Graph Data Management
A graph database is a database where the data structures for the schema
and/or instances are modeled as a (labeled)(directed) graph or generalizations
of it, and where querying is expressed by graph-oriented operations and type
constructors. In this article we present the basic notions of graph databases,
give an historical overview of its main development, and study the main current
systems that implement them
Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres
We describe a new scheme for evolving the equations of force-free
electrodynamics, the vanishing-inertia limit of magnetohydrodynamics. This
pseudospectral code uses global orthogonal basis function expansions to take
accurate spatial derivatives, allowing the use of an unstaggered mesh and the
complete force-free current density. The method has low numerical dissipation
and diffusion outside of singular current sheets. We present a range of one-
and two-dimensional tests, and demonstrate convergence to both smooth and
discontinuous analytic solutions. As a first application, we revisit the
aligned rotator problem, obtaining a steady solution with resistivity localised
in the equatorial current sheet outside the light cylinder.Comment: 23 pages, 18 figures, accepted for publication in MNRA
Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction
Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (similar to 2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area
Recommended from our members
An improved ant colony optimization-based approach with mobile sink for wireless sensor networks
Traditional wireless sensor networks (WSNs) with one static sink node suffer from the well-known hot spot problem, that of sensor nodes near the static sink bear more traffic load than outlying nodes. Thus, the overall network lifetime is reduced due to the fact some nodes deplete their energy reserves much faster compared to the rest. Recently, adopting sink mobility has been considered as a good strategy to overcome the hot spot problem. Mobile sink(s) physically move within the network and communicate with selected nodes, such as cluster heads (CHs), to perform direct data collection through short-range communications that requires no routing. Finding an optimal mobility trajectory for the mobile sink is critical in order to achieve energy efficiency. Taking hints from nature, the ant colony optimization (ACO) algorithm has been seen as a good solution to finding an optimal traversal path. Whereas the traditional ACO algorithm will guide ants to take a small step to the next node using current information, over time they will deviate from the target. Likewise, a mobile sink may communicate with selected node for a relatively long time making the traditional ACO algorithm delays not suitable for high real-time WSNs applications. In this paper, we propose an improved ACO algorithm approach for WSNs that use mobile sinks by considering CH distances. In this research, the network is divided into several clusters and each cluster has one CH. While the distance between CHs is considered under the traditional ACO algorithm, the mobile sink node finds an optimal mobility trajectory to communicate with CHs under our improved ACO algorithm. Simulation results show that the proposed algorithm can significantly improve wireless sensor network performance compared to other routing algorithms
- âŠ