871 research outputs found

    Control of crystal size tailors the electrochemical performance of alpha-V2O5 as a Mg2+ intercalation host

    Get PDF
    Îą-V2O5 has been extensively explored as a Mg2+ intercalation host with potential as a battery cathode, offering high theoretical capacities and potentials vs. Mg2+/Mg. However, large voltage hysteresis is observed with Mg insertion and extraction, introducing significant and unacceptable round-trip energy losses with cycling. Conventional interpretations suggest that bulk ion transport of Mg2+ within the cathode particles is the major source of this hysteresis. Herein, we demonstrate that nanosizing Îą-V2O5 gives a measurable reduction to voltage hysteresis on the first cycle that substantially raises energy efficiency, indicating that mechanical formatting of the Îą-V2O5 particles contributes to hysteresis. However, no measurable improvement in hysteresis is found in the nanosized Îą-V2O5 in latter cycles despite the much shorter diffusion lengths, suggesting that other factors aside from Mg transport, such as Mg transfer between the electrolyte and electrode, contribute to this hysteresis. This observation is in sharp contrast to the conventional interpretation of Mg electrochemistry. Therefore, this study uncovers critical fundamental underpinning limiting factors in Mg battery electrochemistry, and constitutes a pivotal step towards a high-voltage, high-capacity electrode material suitable for Mg batteries with high energy density

    Probing Mg Intercalation in the Tetragonal Tungsten Bronze Framework V₄Nb₁₈O₅₅

    Get PDF
    While commercial Li-ion batteries offer the highest energy densities of current rechargeable battery technologies, their energy storage limit has almost been achieved. Therefore, there is considerable interest in Mg batteries, which could offer increased energy densities in comparison to Li-ion batteries if a high-voltage electrode material, such as a transition-metal oxide, can be developed. However, there are currently very few oxide materials which have demonstrated reversible and efficient Mg^{2+} insertion and extraction at high voltages; this is thought to be due to poor Mg^{2+} diffusion kinetics within the oxide structural framework. Herein, the authors provide conclusive evidence of electrochemical insertion of Mg^{2+} into the tetragonal tungsten bronze V_{4}Nb_{18}O_{55}, with a maximum reversible electrochemical capacity of 75 mA h g^{–1}, which corresponds to a magnesiated composition of Mg_{4}V_{4}Nb_{18}O_{55}. Experimental electrochemical magnesiation/demagnesiation revealed a large voltage hysteresis with charge/discharge (1.12 V vs Mg/Mg^{2+}); when magnesiation is limited to a composition of Mg_{2}V_{4}Nb_{18}O_{55}, this hysteresis can be reduced to only 0.5 V. Hybrid-exchange density functional theory (DFT) calculations suggest that a limited number of Mg sites are accessible via low-energy diffusion pathways, but that larger kinetic barriers need to be overcome to access the entire structure. The reversible Mg^{2+} intercalation involved concurrent V and Nb redox activity and changes in crystal structure, as confirmed by an array of complementary methods, including powder X-ray diffraction, X-ray absorption spectroscopy, and energy-dispersive X-ray spectroscopy. Consequently, it can be concluded that the tetragonal tungsten bronzes show promise as intercalation electrode materials for Mg batteries

    Enhanced charge storage of nanometric ζ-V₂O₅ in Mg electrolytes

    Get PDF
    V2O5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V2O5) and in its metastable tunnel structure (ζ-V2O5). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized (ca. 100 nm) ζ-V2O5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V2O5. This effect results in a significant boost in stable discharge capacity (130 mA h g−1) compared to bulk ζ-V2O5 (70 mA h g−1), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V2O5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    The role of socio-economic status in the decision making on diagnosis and treatment of oesophageal cancer in The Netherlands

    Get PDF
    In the United States (USA), a correlation has been demonstrated between socio-economic status (SES) of patients on the one hand, and tumour histology, stage of the disease and treatment modality of various cancer types on the other hand. It is unknown whether such correlations are also involved in patients with oesophageal cancer in The Netherlands. Between 1994 and 2003, 888 oesophageal cancer patients were included in a prospective database with findings on the diagnostic work-up and treatment of oesophageal cancer. Socio-economic status of patients was defined as the average net yearly income. Linear-by-linear association testing revealed that oesophageal adenocarcinoma was more frequently observed in patients with higher SES and squamous cell carcinoma in patients with lower SES (P=0.02). Multivariable logistic regression analysis showed no correlation between SES and staging procedures and preoperative TNM stage. The adjusted odds ratio (OR) for stent placement was 0.82 (95% CI 0.71–0.95), indicating that with an increase in SES by 1200 €, the likelihood that a stent was placed declined by 18%. Patients with a higher SES more frequently underwent resection or were treated with chemotherapy (OR: 1.15; 95% CI 1.01–1.32 and OR: 1.16; 95% CI 1.02–1.32, respectively). Socio-economic factors are involved in oesophageal cancer in The Netherlands, as patients with a higher SES are more likely to have an adenocarcinoma and patients with a lower SES a squamous cell carcinoma. Moreover, the correlations between SES and different treatment modalities suggest that both patient and doctor determinants contribute to the decision on the most optimal treatment modality in patients with oesophageal cancer

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore