377 research outputs found

    The Energy of a Plasma in the Classical Limit

    Get PDF
    When \lambda_{T} << d_{T}, where \lambda_{T} is the de Broglie wavelength and d_{T}, the distance of closest approach of thermal electrons, a classical analysis of the energy of a plasma can be made. In all the classical analysis made until now, it was assumed that the frequency of the fluctuations \omega << T (k_{B}=\hbar=1). Using the fluctuation-dissipation theorem, we evaluate the energy of a plasma, allowing the frequency of the fluctuations to be arbitrary. We find that the energy density is appreciably larger than previously thought for many interesting plasmas, such as the plasma of the Universe before the recombination era.Comment: 10 pages, 2 figures, accepted for publication in Phys.Rev.Let

    Phase Transitions in a Dusty Plasma with Two Distinct Particle Sizes

    Full text link
    In semiconductor manufacturing, contamination due to particulates significantly decreases the yield and quality of device fabrication, therefore increasing the cost of production. Dust particle clouds can be found in almost all plasma processing environments including both plasma etching devices and in plasma deposition processes. Dust particles suspended within such plasmas will acquire an electric charge from collisions with free electrons in the plasma. If the ratio of inter-particle potential energy to the average kinetic energy is sufficient, the particles will form either a liquid structure with short range ordering or a crystalline structure with long range ordering. Otherwise, the dust particle system will remain in a gaseous state. Many experiments have been conducted over the past decade on such colloidal plasmas to discover the character of the systems formed, but more work is needed to fully understand these structures. The preponderance of previous experiments used monodisperse spheres to form complex plasma systems

    Application of a new screening model to thermonuclear reactions of the rp process

    Full text link
    A new screening model for astrophysical thermonuclear reactions was derived recently which improved Salpeter's weak-screening one. In the present work we prove that the new model can also give very reliable screening enhancement factors (SEFs) when applied to the rp process. According to the results of the new model, which agree well with Mitler's SEFs, the screened rp reaction rates can be, at most, twice as fast as the unscreened ones.Comment: 8 RevTex pages + 7 ps figures. (Revised version). Accepted for publication in Journal of Physics

    Plasma Oscillations and Expansion of an Ultracold Neutral Plasma

    Get PDF
    We report the observation of plasma oscillations in an ultracold neutral plasma. With this collective mode we probe the electron density distribution and study the expansion of the plasma as a function of time. For classical plasma conditions, i.e. weak Coulomb coupling, the expansion is dominated by the pressure of the electron gas and is described by a hydrodynamic model. Discrepancies between the model and observations at low temperature and high density may be due to strong coupling of the electrons.Comment: 4 pages, 4 figures. Accepted Phys. Rev. Let

    Axion Emission from Red Giants and White Dwarfs

    Full text link
    Using thermal field theory methods, we recalculate axion emission from dense plasmas. We study in particular the Primakoff and the bremsstrahlung processes. The Primakoff rate is significantly suppressed at high densities, when the electrons become relativistic. However, the bound on the axion-photon coupling, G<1010G<10^{-10} GeV, is unaffected, as it is constrained by the evolution of HB stars, which have low densities. In contradistinction, the same relativistic effects enhance the bremsstrahlung processes. From the red giants and white dwarfs evolution, we obtain a conservative bound on the axion-electron coupling, gae<2×1013g_{ae} < 2\times 10^{-13}.Comment: 17 pp, 3 PS figures, CERN-TH-7044/9

    Dislocation-Mediated Melting: The One-Component Plasma Limit

    Full text link
    The melting parameter Γm\Gamma_m of a classical one-component plasma is estimated using a relation between melting temperature, density, shear modulus, and crystal coordination number that follows from our model of dislocation-mediated melting. We obtain Γm=172±35,\Gamma_m=172\pm 35, in good agreement with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe

    Dusty Plasma Correlation Function Experiment

    Full text link
    Dust particles immersed within a plasma environment, such as those in protostellar clouds, planetary rings or cometary environments, will acquire an electric charge. If the ratio of the inter-particle potential energy to the average kinetic energy is high enough the particles will form either a "liquid" structure with short-range ordering or a crystalline structure with long range ordering. Many experiments have been conducted over the past several years on such colloidal plasmas to discover the nature of the crystals formed, but more work is needed to fully understand these complex colloidal systems. Most previous experiments have employed monodisperse spheres to form Coulomb crystals. However, in nature (as well as in most plasma processing environments) the distribution of particle sizes is more randomized and disperse. This paper reports experiments which were carried out in a GEC rf reference cell modified for use as a dusty plasma system, using varying sizes of particles to determine the manner in which the correlation function depends upon the overall dust grain size distribution. (The correlation function determines the overall crystalline structure of the lattice.) Two dimensional plasma crystals were formed of assorted glass spheres with specific size distributions in an argon plasma. Using various optical techniques, the pair correlation function was determined and compared to those calculated numerically.Comment: 6 pages, Presented at COSPAR '0

    Plasma formation from ultracold Rydberg gases

    Full text link
    Recent experiments have demonstrated the spontaneous evolution of a gas of ultracold Rydberg atoms into an expanding ultracold plasma, as well as the reverse process of plasma recombination into highly excited atomic states. Treating the evolution of the plasma on the basis of kinetic equations, while ionization/excitation and recombination are incorporated using rate equations, we have investigated theoretically the Rydberg-to-plasma transition. Including the influence of spatial correlations on the plasma dynamics in an approximate way we find that ionic correlations change the results only quantitatively but not qualitatively

    Free streaming in mixed dark matter

    Full text link
    Free streaming in a \emph{mixture} of collisionless non-relativistic dark matter (DM) particles is studied by implementing methods from the theory of multicomponent plasmas. The mixture includes Fermionic, condensed and non condensed Bosonic particles decoupling in equilibrium while relativistic, heavy non-relativistic thermal relics (WIMPs), and sterile neutrinos that decouple \emph{out of equilibrium} when they are relativistic. The free-streaming length λfs\lambda_{fs} is obtained from the marginal zero of the gravitational polarization function, which separates short wavelength Landau-damped from long wavelength Jeans-unstable \emph{collective} modes. At redshift zz we find 1λfs2(z)=1(1+z)[0.071kpc]2aνagd,a2/3(ma/keV)2Ia \frac{1}{\lambda^2_{fs}(z)}= \frac{1}{(1+z)} \big[\frac{0.071}{\textrm{kpc}} \big]^2 \sum_{a}\nu_a g^{2/3}_{d,a}({m_a}/{\mathrm{keV}})^2 I_a ,where 0νa10\leq \nu_a \leq 1 are the \emph{fractions} of the respective DM components of mass mam_a that decouple when the effective number of ultrarelativistic degrees of freedom is gd,ag_{d,a}, and IaI_a only depend on the distribution functions at decoupling, given explicitly in all cases. If sterile neutrinos produced either resonantly or non-resonantly that decouple near the QCD scale are the \emph{only} DM component,we find λfs(0)7kpc(keV/m)\lambda_{fs}(0) \simeq 7 \mathrm{kpc} (\mathrm{keV}/m) (non-resonant), λfs(0)1.73kpc(keV/m)\lambda_{fs}(0) \simeq 1.73 \mathrm{kpc} (\mathrm{keV}/m) (resonant).If WIMPs with mwimp100GeVm_{wimp} \gtrsim 100 \mathrm{GeV} decoupling at Td10MeVT_d \gtrsim 10 \mathrm{MeV} are present in the mixture with νwimp1012\nu_{wimp} \gg 10^{-12},λfs(0)6.5×103pc\lambda_{fs}(0) \lesssim 6.5 \times 10^{-3} \mathrm{pc} is \emph{dominated} by CDM. If a Bose Einstein condensate is a DM component its free streaming length is consistent with CDM because of the infrared enhancement of the distribution function.Comment: 19 pages, 2 figures. More discussions same conclusions and results. Version to appear in Phys. Rev.

    Observation of inhibited electron-ion coupling in strongly heated graphite

    Get PDF
    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter
    corecore