83 research outputs found
Using MathML to Represent Units of Measurement for Improved Ontology Alignment
Ontologies provide a formal description of concepts and their relationships
in a knowledge domain. The goal of ontology alignment is to identify
semantically matching concepts and relationships across independently developed
ontologies that purport to describe the same knowledge. In order to handle the
widest possible class of ontologies, many alignment algorithms rely on
terminological and structural meth- ods, but the often fuzzy nature of concepts
complicates the matching process. However, one area that should provide clear
matching solutions due to its mathematical nature, is units of measurement.
Several on- tologies for units of measurement are available, but there has been
no attempt to align them, notwithstanding the obvious importance for tech-
nical interoperability. We propose a general strategy to map these (and
similar) ontologies by introducing MathML to accurately capture the semantic
description of concepts specified therein. We provide mapping results for three
ontologies, and show that our approach improves on lexical comparisons.Comment: Conferences on Intelligent Computer Mathematics (CICM 2013), Bath,
Englan
Monopolium production from photon fusion at the Large Hadron Collider
Magnetic monopoles have attracted the attention of physicists since the founding of the electromagnetic theory. Their search has been a constant endeavor which was intensified when Dirac established the relation between the existence of monopoles and charge quantization. However, these searches have been unsuccessful. We have recently proposed that monopolium, a monopole-antimonopole bound state, so strongly bound that it has a relatively small mass, could be easier to find and become an indirect but clear signature for the existence of magnetic monopoles. In here we extend our previous analysis for its production to two photon fusion at LHC energies
Scaling critical behavior of superconductors at zero magnetic field
We consider the scaling behavior in the critical domain of superconductors at
zero external magnetic field. The first part of the paper is concerned with the
Ginzburg-Landau model in the zero magnetic field Meissner phase. We discuss the
scaling behavior of the superfluid density and we give an alternative proof of
Josephson's relation for a charged superfluid. This proof is obtained as a
consequence of an exact renormalization group equation for the photon mass. We
obtain Josephson's relation directly in the form , that
is, we do not need to assume that the hyperscaling relation holds. Next, we
give an interpretation of a recent experiment performed in thin films of
. We argue that the measured mean field like
behavior of the penetration depth exponent is possibly associated with a
non-trivial critical behavior and we predict the exponents and
for the correlation lenght and specific heat, respectively. In the
second part of the paper we discuss the scaling behavior in the continuum dual
Ginzburg-Landau model. After reviewing lattice duality in the Ginzburg-Landau
model, we discuss the continuum dual version by considering a family of
scalings characterized by a parameter introduced such that
, where is the bare mass of the magnetic
induction field. We discuss the difficulties in identifying the renormalized
magnetic induction mass with the photon mass. We show that the only way to have
a critical regime with is having , that
is, with having the scaling behavior of the renormalized photon mass.Comment: RevTex, 15 pages, no figures; the subsection III-C has been removed
due to a mistak
Monopolium: the key to monopoles
Dirac showed that the existence of one magnetic pole in the universe could offer an explanation for the discrete nature of the electric charge. Magnetic poles appear naturally in most Grand Unified Theories. Their discovery would be of greatest importance for particle physics and cosmology. The intense experimental search carried thus far has not met with success. Moreover, if the monopoles are very massive their production is outside the range of present day facilities. A way out of this impasse would be if the monopoles bind to form monopolium, a monopole- antimonopole bound state, which is so strongly bound, that it has a relatively small mass. Under these circumstances it could be produced with present day facilities and the existence of monopoles could be indirectly proven. We study the feasibility of detecting monopolium in present and future accelerators
Renormalization Group Effects in the Process
The partial Higgs width is
important at the LHC for Higgs masses in the MSSM mass window up to 140 GeV as
a relatively background free signal of a fundamental scalar. At the photon
photon mode at the NLC it would be the Higgs production mechanism . Two loop
QCD corrections exist for the fermionic contribution and in the case of the
bottom loop large non-Sudakov double logarithms can be resummed to all orders
and contribute up to 12 % compared to the t-quark. In more complicated Higgs
sectors, such as in the MSSM, large enhancements of bottom type
Yukawa couplings can potentially dominate even the whole partial width. A main
uncertainty in all existing calculations is the scale of the strong coupling as
it is only renormalized at the three loop level. In this paper we include the
exact two loop running coupling to all orders into the bottom contribution. We
find that the effective scale is close to .Comment: 10 pages, 2 figures, submitted to Phys. Rev. Let
The Pomeron In Exclusive Vector Meson Production
An earlier developed model for vector meson photoproduction, based on a
dipole Pomeron exchange, is extended to electroproduction. Universality of the
non linear Pomeron trajectory is tested by fitting the model to ZEUS and H1
data as well as to CDF data on elastic scattering.Comment: 12 pages, 13 figure
Subprocess Size in Hard Exclusive Scattering
The interaction region of hard exclusive hadron scattering can have a large
transverse size due to endpoint contributions, where one parton carries most of
the hadron momentum. The endpoint region is enhanced and can dominate in
processes involving multiple scattering and quark helicity flip. The endpoint
Fock states have perturbatively short lifetimes and scatter softly in the
target. We give plausible arguments that endpoint contributions can explain the
apparent absence of color transparency in fixed angle exclusive scattering and
the dimensional scaling of transverse rho photoproduction at high momentum
transfer, which requires quark helicity flip. We also present a quantitative
estimate of Sudakov effects.Comment: 16 pages, 4 figures, JHEP style; v2: quantitative estimate of Sudakov
effects and more detailed discussion of endpoint behaviour of meson
distribution amplitude added, few other clarifications, version to appear in
Phys. Rev.
Aspects of Two-Photon Physics at Linear e+e- Colliders
We discuss various reactions at future e+e- and gamma-gamma colliders
involving real (beamstrahlung or backscattered laser) or quasi--real
(bremsstrahlung) photons in the initial state and hadrons in the final state.
The production of two central jets with large pT is described in some detail;
we give distributions for the rapidity and pT of the jets as well as the
di--jet invariant mass, and discuss the relative importance of various initial
state configurations and the uncertainties in our predictions. We also present
results for `mono--jet' production where one jet goes down a beam pipe, for the
production of charm, bottom and top quarks, and for single production of W and
Z bosons. Where appropriate, the two--photon processes are compared with
annihilation reactions leading to similar final states. We also argue that the
behaviour of the total inelastic gamma-gamma cross section at high energies
will probably have little impact on the severity of background problems caused
by soft and semi--hard (`minijet') two--photon reactions. We find very large
differences in cross sections for all two--photon processes between existing
designs for future e+e- colliders, due to the different beamstrahlung spectra;
in particular, both designs with >1 events per bunch crossing exist.Comment: 51 pages, 13 figures(not included
PYTHIA 6.4 Physics and Manual
The PYTHIA program can be used to generate high-energy-physics `events', i.e.
sets of outgoing particles produced in the interactions between two incoming
particles. The objective is to provide as accurate as possible a representation
of event properties in a wide range of reactions, within and beyond the
Standard Model, with emphasis on those where strong interactions play a role,
directly or indirectly, and therefore multihadronic final states are produced.
The physics is then not understood well enough to give an exact description;
instead the program has to be based on a combination of analytical results and
various QCD-based models. This physics input is summarized here, for areas such
as hard subprocesses, initial- and final-state parton showers, underlying
events and beam remnants, fragmentation and decays, and much more. Furthermore,
extensive information is provided on all program elements: subroutines and
functions, switches and parameters, and particle and process data. This should
allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further
information may be found on the PYTHIA web page:
http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly
deleted section heading for "Physics Processes" reinserted, affecting section
numbering. Minor updates to take into account referee comments and new colour
reconnection option
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- …