1,817 research outputs found
Twisted mass fermions: neutral pion masses from disconnected contributions
Twisted mass fermions allow light quarks to be explored but with the
consequence that there are mass splittings, such as between the neutral and
charged pion. Using a direct calculation of the connected neutral pion
correlator and stochastic methods to evaluate the disconnected correlations, we
determine the neutral pion mass. We explore the dependence on lattice spacing
and quark mass in quenched QCD. For dynamical QCD, we determine the sign of the
splitting which is linked, via chiral PT, to the nature of the phase transition
at small quark mass.Comment: 6 pages, poster (hadron spectrum and quark masses) at Lattice
2005,Dublin, July 25-3
CR-EST: a resource for crop ESTs
The crop expressed sequence tag database, CR-EST (http://pgrc.ipk-gatersleben.de/cr-est/), is a publicly available online resource providing access to sequence, classification, clustering and annotation data of crop EST projects. CR-EST currently holds more than 200 000 sequences derived from 41 cDNA libraries of four species: barley, wheat, pea and potato. The barley section comprises approximately one-third of all publicly available ESTs. CR-EST deploys an automatic EST preparation pipeline that includes the identification of chimeric clones in order to transparently display the data quality. Sequences are clustered in species-specific projects to currently generate a non-redundant set of ∼22 600 consensus sequences and ∼17 200 singletons, which form the basis of the provided set of unigenes. A web application allows the user to compute BLAST alignments of query sequences against the CR-EST database, query data from Gene Ontology and metabolic pathway annotations and query sequence similarities from stored BLAST results. CR-EST also features interactive JAVA-based tools, allowing the visualization of open reading frames and the explorative analysis of Gene Ontology mappings applied to ESTs
Lattice Spacing Dependence of the First Order Phase Transition for Dynamical Twisted Mass Fermions
Lattice QCD with Wilson fermions generically shows the phenomenon of a first
order phase transition. We study the phase structure of lattice QCD using
Wilson twisted mass fermions and the Wilson plaquette gauge action are used in
a range of beta values where such a first order phase transition is observed.
In particular, we investigate the dependence of the first order phase
transition on the value of the lattice spacing. Using only data in one phase
and neglecting possible problems arising from the phase transition we are able
to perform a first scaling test for physical quantities using this action.Comment: 15 pages, 7 figures, typo corrected, web-list of authors correcte
Synthetic Spectra and Color-Temperature Relations of M Giants
As part of a project to model the integrated spectra and colors of elliptical
galaxies through evolutionary synthesis, we have refined our synthetic spectrum
calculations of M giants. After critically assessing three effective
temperature scales for M giants, we adopted the relation of Dyck et al. (1996)
for our models. Using empirical spectra of field M giants as a guide, we then
calculated MARCS stellar atmosphere models and SSG synthetic spectra of these
cool stars, adjusting the band absorption oscillator strengths of the TiO bands
to better reproduce the observational data. The resulting synthetic spectra are
found to be in very good agreement with the K-band spectra of stars of the
appropriate spectral type taken from Kleinmann & Hall (1986) as well. Spectral
types estimated from the strengths of the TiO bands and the depth of the
bandhead of CO near 2.3 microns quantitatively confirm that the synthetic
spectra are good representations of those of field M giants. The broad-band
colors of the models match the field relations of K and early-M giants very
well; for late-M giants, differences between the field-star and synthetic
colors are probably caused by the omission of spectral lines of VO and water in
the spectrum synthesis calculations. Here, we present four grids of K-band
bolometric corrections and colors -- Johnson U-V and B-V; Cousins V-R and V-I;
Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO -- for models
having 3000 K < Teff < 4000 K and -0.5 < log g < 1.5. These grids, which have
[Fe/H] = +0.25, 0.0, -0.5 and -1.0, extend and supplement the color-temperature
relations of hotter stars presented in a companion paper (astro-ph/9911367).Comment: To appear in the March 2000 issue of the Astronomical Journal. 60
pages including 15 embedded postscript figures (one page each) and 6 embedded
postscript tables (10 pages total
Recommended from our members
STOUT SMEARING FOR TWISTED FERMIONS.
The effect of Stout smearing is investigated in numerical simulations with twisted mass Wilson quarks. The phase transition near zero quark mass is studied on 12{sup 3} x 24, 16{sup 3} x 32 and 24{sup 3} x 48 lattices at lattice spacings a {approx_equal} 0.1-0.125 fm. The phase structure of Wilson fermions with twisted mass ({mu}) has been investigated in [1,2]. As it is explained there, the observed first order phase transition limits the minimal pion mass which can be reached in simulations at a given lattice spacing: m{sub k}{sup min} {approx_equal} {theta}(a). The phase structure is schematically depicted in the left panel of Fig. I . The phase transition can be observed in simulations with twisted mass fermions, for instance, as a ''jump'' or even metastabilities in the average plaquette value as a function of the hopping parameter ({kappa}). One possibility to weaken the phase transition and therefore allow for lighter pion masses at a given lattice spacing is to use an improved gauge action like the DBW2, Iwasaki, or tree-level Symanzik (tlSym) improved gauge action instead of the simple Wilson gauge action. This has been successfully demonstrated in [3,4,5]. Here we report on our attempts to use a smeared gauge field in the fermion lattice Dirac operator to further reduce the strength of the phase transition. This is relevant in simulations with N{sub f} = 2 + 1 + 1 (u,d,s,c) quark flavors [6] where the first order phase transition becomes stronger compared to N{sub f} = 2 simulations. The main impact of the above mentioned improved gauge actions on the gauge fields occurring in simulations is to suppress short range fluctuations (''dislocations'') and the associated ''exceptionally small'' eigenvalues of the fermion matrix. The same effect is expected from smearing the gauge field links in the fermion action. The cumulated effect of the improved gauge action and smeared links should allow for a smaller pion mass at a given lattice spacing and volume. Our choice is the Stout smearing procedure as introduced in [7], since it can easily be implemented in the Hybrid Monte Carlo (HMC) based updating algorithms we are currently using. One should keep in mind that a possible caveat of this procedure is ''oversmearing'', i.e., removing too many small eigenvalues by applying too many smearing steps and/or using a too high value for the smearing parameter-because not every small eigenvalue is ''unphysical''. In addition, after many smearing steps the fermion action can become too delocalized which can lead to an unwanted slowing down of the approach to the continuum limit. In order to avoid this caveat we choose to work with only one step of very mild Stout smearing. Moreover we keep these smearing parameters fixed as we change the lattice spacing. In Section 1 we will shortly review the smearing procedure and the twisted mass formulation, as well as some details concerning the used updating algorithms. Section 2 is devoted to the presentation of the results of our numerical simulations using N{sub f} = 2 and N{sub f} = 2 + 1 + 1 flavors of twisted mass quarks
The First Substellar Subdwarf? Discovery of a Metal-poor L Dwarf with Halo Kinematics
We present the discovery of the first L-type subdwarf, 2MASS
J05325346+8246465. This object exhibits enhanced collision-induced H
absorption, resulting in blue NIR colors (). In
addition, strong hydride bands in the red optical and NIR, weak TiO absorption,
and an optical/J-band spectral morphology similar to the L7 DENIS 02051159AB
imply a cool, metal-deficient atmosphere. We find that 2MASS 0532+8246 has both
a high proper motion, = 2\farcs60\pm0\farcs15 yr, and a
substantial radial velocity, km s, and its
probable proximity to the Sun (d = 10--30 pc) is consistent with halo
membership. Comparison to subsolar-metallicity evolutionary models strongly
suggests that 2MASS 0532+8246 is substellar, with a mass of 0.077 M
0.085 M_{\sun} for ages 10--15 Gyr and metallicities Z_{\sun}. The discovery of this object clearly indicates that star
formation occurred below the Hydrogen burning mass limit at early times,
consistent with prior results indicating a flat or slightly rising mass
function for the lowest-mass stellar subdwarfs. Furthermore, 2MASS 0532+8246
serves as a prototype for a new spectral class of subdwarfs, additional
examples of which could be found in NIR proper motion surveys.Comment: 9 pages, 3 figures, accepted to Ap
Comparative Modelling of the Spectra of Cool Giants
Our ability to extract information from the spectra of stars depends on
reliable models of stellar atmospheres and appropriate techniques for spectral
synthesis. Various model codes and strategies for the analysis of stellar
spectra are available today. We aim to compare the results of deriving stellar
parameters using different atmosphere models and different analysis strategies.
The focus is set on high-resolution spectroscopy of cool giant stars. Spectra
representing four cool giant stars were made available to various groups and
individuals working in the area of spectral synthesis, asking them to derive
stellar parameters from the data provided. The results were discussed at a
workshop in Vienna in 2010. Most of the major codes currently used in the
astronomical community for analyses of stellar spectra were included in this
experiment. We present the results from the different groups, as well as an
additional experiment comparing the synthetic spectra produced by various codes
for a given set of stellar parameters. Similarities and differences of the
results are discussed. Several valid approaches to analyze a given spectrum of
a star result in quite a wide range of solutions. The main causes for the
differences in parameters derived by different groups seem to lie in the
physical input data and in the details of the analysis method. This clearly
shows how far from a definitive abundance analysis we still are.Comment: accepted for publication in A&A. This version includes also the
online tables. Reference spectra will later be available via the CD
Bulk Transfer Coefficients Estimated From Eddy-Covariance Measurements Over Lakes and Reservoirs
Peer reviewe
- …