2,934 research outputs found

    Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level

    Get PDF
    Worldwide, the conditions of biotic and abiotic stresses adversely affect the potential production of maize. Drought or heat facilitate the infection with fungi such as Aspergillus flavus and Fusarium moniliforme, and consequently increase the production of mycotoxins. There are several strategies for managing the problem, but in the future, people will prefer the cleaner and cheaper technology. The use of elicitors for protection of corn can be considered a cheap and clean technology. Chitosan elicitor is a linear polysaccharide produced commercially by deacetylation of chitin. It has been reported that this elicitor induce phytoalexin accumulation in plant tissue. Application of chitosan to seeds in rice significantly increased rice yield. About this, there are no reports in corn. For this reason, the aim of this study was to determine the protective effect of chitosan in maize seedlings subjected to abiotic stresses. To this end, three treatments were tested (a negative control, a positive control, and a group coated with chitosan solution) under four abiotic stresses conditions since their germination stage: drought, moisture, acid pH and alkaline pH. During five weeks, the seedlings growth was evaluated by measuring their total length, the length of leaves, stems and the thickness of these and presence of fungi. Positive effect was observed in seeds treated with chitosan or stressed with acidic pH in dimensions of seedlings and there was no fungal growth.Key words: Abiotic stress, Zea mays, chitosan, pH, drought, humidit

    Advantages and disadvantages on photosynthesis measurement techniques: A review

    Get PDF
    Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to molecular reaction centers for conversion into chemical energy with nearly 100% efficiency. Speed is the key as the transfer of the solar energy takes place almost instantaneously such that little energy is wasted as heat. How photosynthesis achieves this near instantaneous energy transfer is a longstanding mystery that may have finally been solved. Measurements of this process are useful in order to understand how it might be controlled and how the phytomonitoring of plant development to increase productivity can be carried out. Techniques in this sense have evolved and nowadays several have been used for this purpose. Thus, the aim of this paper is to present a review of the various methods and principles that have been used in measuring photosynthesis presenting the advantages and disadvantages of various existing measurement methodologies in order to recommend the most appropriate method according to the needs of specific investigations

    Mathematical modeling tendencies in plant pathology

    Get PDF
    Nowadays plant diseases represent one of the major threats for crops around the world, because they carry healthy, economical, environmental and social problems. Considering this, it is necessary to have a description of the dynamics of plant disease in order to have sustainable strategies to prevent and diminish the impact of the diseases in crops. Mathematical tools have been employed to create models which give a description of epidemic dynamics; the commonly mathematical tools used are: Diseaseprogress curves, Linked Differential Equation (LDE), Area Under disease Progress Curve (AUDPC) and computer simulation. Nevertheless, there are other tools that have been employed in epidemiology of plant disease like: statistical tools, visual evaluations and pictorial assessment. Each tool has its own advantages and disadvantages. The nature of the problem and the epidemiologist necessities determine the mathematical tool to be used and the variables to be included into the model. This paperpresents review of the tools used in epidemiology of plant disease remarking their advantages and disadvantages and mathematical modeling tendencies in plant pathology

    Potential of mathematical modeling in fruit quality

    Get PDF
    A review of mathematical modeling applied to fruit quality showed that these models ranged inresolution from simple yield equations to complex  representations of processes as respiration, photosynthesis and assimilation of nutrients. The latter models take into account complex  genotype environment interactions to estimate their effects on growth and yield. Recently, models are used to estimate seasonal changes in quality traits as fruit size, dry matter, water content and the concentration of sugars and acids, which are very important for flavor and aroma. These models have demonstrated their ability to generate relationships between physiological variables and quality attributes (allometric relations). This new kind of hybrid models has sufficient complexity to predict quality traits behavior

    Use of elicitors as an approach for sustainable agriculture

    Get PDF
    Plant pathogens are responsible for large declines in agricultural production. Their control is carried out mainly by chemical and frequently proposed biological methods to reduce their environmental impact. On the other hand, plant-pathogen or microbe interactions generate multiple signals within plants activating defense mechanism, some of which can also be induced by elicitors (protective molecules). Elicitor-induced plant signaling serves as a guide to a series of intracellular events that end in activation of transduction cascades and hormonal pathways triggering induced resistance (IR) and consequently activation of plant immunity to environmental stresses. So, it is necessary to understand where and how elicitors act in cellular defense mechanism of crops, to improve protection and management for sustainable crop. Therefore this review focused on main topics that guide induced resistance and therefore activation of plant immune response.Keywords: Elicitors, defense mechanism, Immune response, Induced resistance, MAP

    Analogies between geminivirus and oncovirus: Cell cycle regulation

    Get PDF
    Geminiviruses are a large family of plant viruses whose genome is composed of one or two circular and single strand of DNA. They replicate in the cell nucleus being Rep protein, the only viral protein necessary for their replication process. Geminiviruses as same as animal DNA oncoviruses, like SV40, adenovirus and papillomavirus, use the host replication machinery to replicate their DNA. Consequently, they alter host cell cycle regulation to create a suitable environment for their replication. One of the events involved in this alteration would be the inactivation of the retinoblastoma protein (pRb) that negatively regulates the G1/S transition in cells. The discovery of one homologue of the pRb in plants and the finding that Rep protein of some geminiviruses interacts with human retinoblastoma protein, as well as animal virus oncoproteins, is very interesting. This finding laid the groundwork for subsequent detection of analogies between geminiviruses and animal DNA tumor viruses, especially in their interaction with pRb. Moreover, the finding allowed the determination of how this interaction affects the regulation of the cell cycle in plants and animals. Accumulated knowledge generates new interesting questions and possible implications, and so, in this document, we dare to watch in that direction.Key words: Geminivirus, oncovirus, retinoblastoma protein, cell cycle regulation, endoreduplication

    Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    Get PDF
    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201
    corecore