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A review of mathematical modeling applied to fruit quality showed that these models ranged in 
resolution from simple yield equations to complex representations of processes as respiration, 
photosynthesis and assimilation of nutrients. The latter models take into account complex genotype-
environment interactions to estimate their effects on growth and yield. Recently, models are used to 
estimate seasonal changes in quality traits as fruit size, dry matter, water content and the concentration 
of sugars and acids, which are very important for flavor and aroma. These models have demonstrated 
their ability to generate relationships between physiological variables and quality attributes (allometric 
relations). This new kind of hybrid models has sufficient complexity to predict quality traits behavior.  
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INTRODUCTION 
 
Fruit quality is a complex issue defined as a sophisticated 
chain of biological processes (Genard et al., 2007). 
These processes (transpiration, respiration, photosyn-
thesis) involve exchanges between the fruit and its 
environment. Quantitative integration of these processes 
to monitor fruit’s behavior is a task involving physiological 
modeling. Nowadays, the interest in mathematical mode-
ling about the quality changes during fruit maturation has 
been increased (Wegehenkel and Mirschel, 2005). It is 
possible through simulation to evaluate the quality of final 
products in order to identify critical points during post-
harvest handling and to adjust or improve the decision 
making related to harvest dates and product commercial-
lization. Adequate models should be mechanistic enough 
to give a representative description of physiological pro-
cesses and explain variations in some quality traits.  
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Recently, models have become more accurate and 
better able to predict the outcome of complex issues such 
as genotype-environment interactions. Furthermore, efforts 
have been made to define fruit quality and integrating it 
with crop growth models. These models are based on 
accurate descriptions of early stages of growth, including 
fresh fruit mass, dry matter content and concentration of 
sugars. The goodness-of-fit of a proposed model for each 
crop is evaluated taking into account the criterion of the 
root mean squared error (RMSE). This is a common 
parameter used to quantify the mean difference between 
predicted model and experimental data for the case of 
non-linear models (Quilot et al., 2005; Kobayashi and Us 
Salam, 2000).  

The global goodness-of-fit of a model is computed by 
averaging the relative RMSE (RRMSE) of all experiments 
(Quilot et al., 2004). Spearman´s rank correlation co-
efficients could also be calculated. These coefficients 
compare the ranking of experiments on the basis of ob-
served and predicted values (Quilot et al., 2005). Given 
the   economic  importance  of  these  quality  traits,  their 



 
 
 
 
prediction by mathematical modeling based on underlying 
physiological principles should have priority. 
 
 
MATHEMATICAL MODELING 
 
A mathematical model is an abstraction of reality which 
describes processes and whose aim is the study and 
analysis of a system under different conditions (Mason 
and Dzierzon, 2006; De Wit, 1982). In order to realize a 
successful mathematical model, the modeler needs to 
chose what mathematical principles and techniques to 
use and the solution also needs to be checked against 
experimental data (Crouch and Haines, 2004). Models 
sometimes simplify the system in order to reduce the 
dataset required to estimate parameters (Lisson et al., 
2005; Lentz, 1998).  

Mathematical models allow prediction of the system 
behavior under specific handling and environmental 
influences, especially when it is too expensive to perform 
certain types of studies or in which long term effects may 
be difficult to monitor (Fraisse et al., 2006). By this way it 
can be demonstrated that there is a mutual dependency 
between basic crop physiology research and model 
development (Lisson et al., 2005). 
 
 
APPLICATION OF MATHEMATICAL MODELS TO 
DESCRIBE GROWTH AND YIELD IN PLANTS 
 
For the last decades, crop modeling has become an 
important tool in horticulture as in other areas of plant 
production (Gary et al., 1998). Such success has been 
encouraged by the progress in crop physiology, crop 
ecology and computer technology which enhances the 
versatility of this technique (Bouman et al., 1996; Colbert, 
1995).  

The quantification and prediction of the potential effects 
of agricultural management practices on crop growth and 
yield is an essential task in any agro-ecological research 
(Wegehenkel and Mirschel, 2005). Growth, development 
and yield have been simulated as a function of weather, 
soil conditions and crop management by integrating 
scientific knowledge from diverse agronomic disciplines 
(Hoogenboom et al., 2004). By mathematical modeling, 
the production of some crops has been improved taking 
into account climate variables such as radiation, salinity, 
temperature, moisture, atmospheric carbon dioxide (CO2), 
temporal and spatial climatic variability (Karlsberg et al., 
2006; Pearson et al., 2008; Ewert et al., 2005; Tao et al., 
2009) and recently satellite-derived meteorological inputs 
(de Wit and van Diepen, 2008). Changes in crop produc-
tivity depend on different biophysical and socioeconomic 
factors which are difficult to assess. Process-based bio-
physical models are increasingly used to estimate 
productivity and food supply under different climatic 
factors, but have several limitations due to inherent com- 
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plexity (Ewert et al., 2005). The best level of resolution for 
growth and yield models has been highly debated. With 
the use of extremely complex models the compounded 
errors are increased (Mason and Dzierzon, 2006).  
 
 
EVALUATION OF PHYSIOLOGICAL TRAITS 
THROUGH MODELING 
 
The development of a plant is the result of processes 
working at a hierarchy of scales. The representation of 
these processes and interactions in a model is a big 
challenge. Ecophysiological orientation is needed to pre-
dict composition and plant functioning on the basis of 
physiological traits (van Wijk, 2007). There are a few 
studies on variability of crop traits related to biomass 
production and final yield such as leaf area size, spatial 
distribution and senescence, light interception capacity, 
radiation use efficiency and biomass partitioning. These 
traits have been used in the search of maize genotypes 
with improved performance for nitrogen capture and use 
(Cirilo et al., 2009). The modeling of physiological traits 
can help to improve yield and to make decisions that 
optimize use of available resources (Soltani et al., 2001). 
Crop growth models exist for many horticultural crops. 
Often, descriptive and mechanistic models are distin-
guished (Pronk et al., 2003). Descriptive models reflect 
little or none of the mechanisms that are the cause of a 
system behavior, whereas mechanistic models consist of 
quantitative description of these mechanisms (Penning 
de Vries et al., 1989). 
 
 
Descriptive models 
 
Until 1960, agricultural research almost completely relied 
on experimental and empirical work, combined with sta-
tistical analysis (Van Ittersum et al., 2003). These 
models, in a first stage, were designed to describe and 
analyze plant growth without any model underlying the 
physiological processes being classified as function-
oriented models (Renton et al., 2005). Descriptive models 
have a short computing time and they usually contain a 
few stated variables (Mirschel et al., 2004). Although the 
predictive value of descriptive models can be high, there 
are important limitations. This is so because they are not 
able to simulate plant adaptability and response to 
different conditions; due to the fact that adding new input 
factors means building a new model based on an exten-
ded data set (Renton et al., 2005). Unlike descriptive, 
mechanistic models are ruled by biological principles and 
involve breaking down the system into components that 
are modeled separately. In general, descriptive models 
only describe relationships between response and pre-
dictor variables as economically as possible for a parti-
cular dataset. Essentially, descriptive models are descrip-
tions of observational  data,  most  often  associated  with  
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Figure 1. Comparison of mechanistic and descriptive approaches for crop growth modeling. 

 
 
 

curve fitting and regression. They are not ruled by biologi-
cal processes and often do not require detailed know-
ledge of the respiration, photosynthesis and assimilation 
mechanisms (Figure 1; Domijan et al., 2006).  
 
 
Mechanistic models 
 
Mechanistic models are used for testing hypotheses and 
synthesizing knowledge of complex systems on the basis 
of physiological processes such as photosynthesis, assi-
milation and respiration which respond to climatic condi-
tions (Brainard and Bellinder, 2004; Huang, 2004; 
Thornley and Cannell, 2000) (Figure 1). The use of these 
models is increasingly being used to investigate the 
impacts of weather and climate variability on crop growth 
and production (Tao et al., 2009).  

Photosynthetic active radiation (PAR) is the driving 
force for evapotranspiration and photosynthesis (Dutilleul 
et al., 2007; Sentelhas and Gillespie, 2008). In photosyn-
thesis-based models, the interception of light by leaf area 
is used to simulate the production of photosynthates 
which consists of carbon leaf assimilation plus the carbon 
mobilized from reserves, carbon is allocated according to 
organ demands. Subsequently, the use of photosyn-
thates for respiration, conversion into structural dry 
matter (DM) and finally, the fresh weight can be esti-
mated from the dry weight (Jordan-Meille and Pellerin, 
2004). Using the model of Genard et al. (2003), the fruit 

flesh carbon is then partitioned into several compounds: 
sugars, other fruit compounds and respired CO2. These 
processes are described in terms of a set of differential 
equations.  

In the SUCROS models, the rate of CO2 assimilation is 
calculated from daily incoming radiation, temperature and 
leaf area index. This model is based on time of radiation 
and on exponential light extinction (Beer-Lambert Law) 
(Monsi and Saeki, 1953). Prediction of the leaf area index 
is required to estimate interception of solar radiation and 
biomass production (Soltani et al., 2006). In field crops, 
there is often a linear relationship between cumulative 
intercepted PAR and accumulated biomass (Zhang et al., 
2008). Insufficient nitrogen (N) levels promote a dimini-
shing in leaf area development, decreased mass accu-
mulation and early maturity (Sinclair et al., 2003). 
Temperature can affect plant leaf area via its effects on 
rate of leaf appearance (Singels et al., 2005). 

Respiration is one of the main energy sources in 
growing plants and it has been hardly studied compared 
to photosynthesis (Kuretz et al., 2003). Respiration has 
been modeled according to the concept of growth and 
maintenance (Albrizio and Steduto, 2003). Short-term ob-
servations generally show that respiration is highly sen-
sitive to temperature variations and CO2 may affect the 
growth coefficient (Challinor and Wheeler, 2008). In 
simulation models, the growth coefficient is usually 
independent   of   environmental   factors   (Urban, 2003; 
Bannayan et al., 2005). 



 
 
 
 

Mathematical models that successfully predict product 
composition as a function of climatic variables would be a 
useful tool to achieve more desirable sensorial charac-
teristics in the final crop product (Heredia and Andres, 
2008). 
 
 
QUALITY IN HORTICULTURAL PRODUCTS 
 
Recently, fruit crop models have been developed beyond 
fruit dry mass accumulation but including fruit quality 
(Struik et al., 2005). Fruit quality is a complex issue. It 
involves a set of traits such as fruit size, overall compo-
sition, taste, aroma, texture and proportion of edible 
tissue (Genard et al., 2007; Gruda, 2005). Fruit growers 
must produce high-grade quality fruits in terms of these 
traits to satisfy consumer demands (Sivakumar and 
Korsten, 2007; Nicolai et al., 2008). The links between 
environmental control and quality traits have been 
extensively investigated (Wu et al., 2002; Challinor et al., 
2004). These studies have limited explanatory power of 
models since they focus on these links without explicitly 
considering the underlying mechanisms. Current method-
ologies for prediction of changes in product quality are 
based on deterministic simulations (Qin and Lu, 2009; Di 
Scala and Crapiste, 2008). Even though every process 
involved in fruit physiology cannot be integrated into a 
model, a real degree of complexity is needed since fruit 
exchanges energy and mass with its environment and it 
is composed of a large number of diverse components 
(different sugars, acids, etc.) which interact with each 
other non-linearly (Genard et al., 2007). Taste mainly 
results from the accumulation of sugars and acids in fruit 
cells. 

This accumulation can be controlled through the inten-
sity of metabolic transformations. These processes are 
well known and have been extensively described in the 
literature (Ho, 1988; Wink, 1993). On this basis, Genard 
et al. (2003) designed a mechanistic model called 
SUGAR to predict changes in sugar composition during 
each fruit development. In this model, sugars are either 
directly stored in the cells, transformed into other sugars, 
or used to synthesize other compounds. Lobit et al. 
(2006) designed two models predicting fruit acidity, the 
first one described citric acid production and degradation 
through the citrate cycle. In the second, malic acid 
content was modeled mainly on thermodynamic condi-
tions of its transport from cytosol to vacuole. 

Important quality traits were manifested at the fruit 
scale (Figure 2). This is especially true for fruit size, dry 
matter content and percentage of edible tissues. Fruit 
size and dry matter result from exchange of resources  
with the plant and the atmosphere. For tomatoes, the dry 
matter content is an important attribute to determine fruit 
quality. It can be predicted from net photosynthesis and 
correlated to the sugar content (Cooman and Schrevens, 
2006). The carbohydrate supply has been modeled 
according to the source/sink concepts (Lechaudel et al., 
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2005). Recent studies tend to improve models for dry 
matter content and its partitioning between the different 
organs in tomato crop (Dimokas et al., 2009) and in res-
ponse to variations in light intensity. This situation led 
tomato crop to strong morphological adaptations (Dong et 
al., 2008). Several models have been developed during 
the last two decades to simulate the growth, development 
and yield of a tomato crop, but their results were not well 
correlated with quality attributes in order to develop the 
quality models (Cooman and Schrevens, 2006; Schouten 
et al., 2007; Dimokas et al., 2009).  

Quality in tomato is a difficult issue and sensory 
studies have not clearly established the importance of the 
analytical variables (Ruiz et al., 2006). Considerable 
progress has been made in the identification of important 
components, but additional information is required regar-
ding the optimal concentrations of sugars, acids and 
other components required for good flavor (Causse et al., 
2003). Compounds such as vitamins and carotenoids are 
essential for the nutritional quality of fruits. Their bio-
synthetic pathways are often known (Carrari and Fernie, 
2006), but the lack of knowledge on their regulation strongly 
limits the modeling capacity. So, more quantitative 
studies are needed before undertaking the modeling. 
There is a real challenge for the future here. 
 
 
FUTURE TRENDS IN MATHEMATICAL MODELING OF 
FRUIT QUALITY 
 
Fruit breeders must satisfy two requests concurrently: the 
production of high quality fruits and the use of sustainable 
practices (Li et al., 2009; Quilot et al., 2005; Kropff and 
Struik, 2002). Globalization of markets has increased 
competitiveness, highlighting the need for products of 
high quality (Dimokas et al., 2009), following a pre-
established delivery data for these products. Crop 
development should therefore, be programmed so that it 
follows a desired growth profile by considering various 
crop features and climatic conditions, as well as the 
consumer demands to satisfy quality traits (Pucheta et 
al., 2006). These quality traits in harvestable parts, in 
terms of human requirement, are diverse and crop-
specific, but by sensory analysis data, they can be 
modeled considering the balance of carbon, sugar, water, 
acid content and their correlation with aroma and flavor 
(Figure 2). 

Recent advances in genetics and molecular plant 
biology can play a key role in crop modeling by improving 
crop responses to environmental conditions and manage-
ment factors (Bannayan et al., 2007). The crop develop-
ment showed a phenology strongly determined by tempe-
rature and photoperiod. Both are the principal modulators 
of visible manifestations of the genetic programming, 
while crops showed an allometry of reproducible constancy 
(Misle, 2006). Allometric models are based on correla-
tions between biomass and morphological characters 
(Nafus et al., 2009).  This  simulation  approach  provided  
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Figure 2. An extension of the model of Lescourret and Genard (2005). This includes possible links between 
information from sensory analysis and complex quality traits via simulation for predicting aroma-flavor-
composition interactions which influence quality characteristics for fruits. The four models are important 
because they will allow quantification of quality-determining compounds, besides sensory analysis underline 
the importance of such compounds in the process of acceptation and preference by consumers. 

 
 
 
simple descriptions of crop growth with a high level of 
empiricism (Marcelis, 1993).  
 
 
CONCLUSION 
 

A new generation of models should enable us narrow the 
gap between genes and complex phenotypes. Concer-
ning fruit quality, this new generation is really needed to 
accompany the advances in fruit genomics (Baxter et al., 
2005). An approach for the understanding of physio-
logical and genetic phenomena has been the dissection 
of the quality traits into elementary processes. This 
approach has helped to highlight the main processes 
responsible for variations in complex fruit systems (Figure 
3). The combined models can be used for practical pur-
poses such as predicting the genotypic variations of a 
plant response to environmental conditions (Yin et al., 
2003).  

In a context of multicriteria objectives, combined models  
integrated the knowledge and potentialities of physiology,  

genetics and mathematical modeling to enhance the 
understanding of plant functioning (Quilot et al., 2005). 
Another modeling approach which involves relationships 
between the relative growth rates of two or more plant 
organs is the allometric modeling (Antunes et al., 2008). 
This method has the advantage of being inexpensive, 
rapid, reliable and a non-destructive alternative for growth 
estimations (Litton, 2008). These descriptive models 
could be correlated to mechanistic models to enhance 
the comprehension of the physiological processes invol-
ved in fruit quality. In particular, models have been exten-
ded to lower organizational levels, such as cell meta-
bolism and biochemical pathways. Furthermore, efforts 
have been made to define plant systems biology and to 
broaden its scope by integrating it with crop models 
(Hammer, 2004). Together, these developments create 
opportunities for applying understanding at a lower 
organizational level to analyze complex phenotypical 
behavior at crop level and improve the quality of crops 
and harvestable products (Struik et al., 2005). 
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Figure 3. Scheme of criteria related to fruit quality modeling. 
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