135 research outputs found

    HST Measurements of the Expansion of NGC 6543: Parallax Distance and Nebular Evolution

    Get PDF
    The optical expansion parallax of NGC 6543 has been detected and measured using two epochs of HST images separated by a time baseline of only three years. We have utilized three separate methods of deriving the angular expansion of bright fiducials, the results of which are in excellent agreement. We combine our angular expansion estimates with spectroscopically obtained expansion velocities to derive a distance to NGC 6543 of 1001±\pm269 pc. The deduced kinematic age of the inner bright core of the nebula is 1039±\pm259 years; however, the kinematic age of the polar caps that surround the core is larger - perhaps the result of deceleration or earlier mass ejection. The morphology and expansion patterns of NGC 6543 provide insight into a complex history of axisymmetric, interacting stellar mass ejections.Comment: Accepted for publication in AJ. 18 pages. 6 figure

    Confirmation of SBS 1150+599A As An Extremely Metal-Poor Planetary Nebula

    Full text link
    SBS 1150+599A is a blue stellar object at high galactic latitude discovered in the Second Byurakan Survey. New high-resolution images of SBS 1150+599A are presented, demonstrating that it is very likely to be an old planetary nebula in the galactic halo, as suggested by Tovmassian et al (2001). An H-alpha image taken with the WIYN 3.5-m telescope and its "tip/tilt" module reveals the diameter of the nebula to be 9.2", comparable to that estimated from spectra by Tovmassian et al. Lower limits to the central star temperature were derived using the Zanstra hydrogen and helium methods to determine that the star's effective temperature must be > 68,000K and that the nebula is optically thin. New spectra from the MMT and FLWO telescopes are presented, revealing the presence of strong [Ne V] lambda 3425, indicating that the central star temperature must be > 100,000K. With the revised diameter, new central star temperature, and an improved central star luminosity, we can constrain photoionization models for the nebula significantly better than before. Because the emission-line data set is sparse, the models are still not conclusive. Nevertheless, we confirm that this nebula is an extremely metal-poor planetary nebula, having a value for O/H that is less than 1/100 solar, and possibly as low as 1/500 solar.Comment: 19 pages, 6 figures. Accepted for publication in the Astronomical Journa

    Multi-wavelength study of a new Galactic SNR G332.5-5.6

    Full text link
    We present compelling evidence for confirmation of a Galactic supernova remnant (SNR) candidate, G332.5-5.6, based initially on identification of new, filamentary, optical emission line nebulosity seen in the arcsecond resolution images from the AAO/UKST HAlpha survey. The extant radio observations and X-ray data which we have independently re-reduced, together with new optical spectroscopy of the large-scale fragmented nebulosity, confirms the identification. Optical spectra, taken across five different, widely separated nebula regions of the remnant as seen on the HAlpha images, show average ratios of [NII]/HAlpha =2.42, [SII]/HAlpha = 2.10, and [SII] 6717/6731 = 1.23, as well as strong [OI] 6300, 6364A and [OII] 3727A emission. These ratios are firmly within those typical of SNRs. Here, we also present the radio-continuum detection of the SNR at 20/13cm from observations with the Australia Telescope Compact Array (ATCA). Radio emission is also seen at 4850 MHz, in the PMN survey (Griffith and Wright 1993) and at 843 MHz from the SUMSS survey (Bock, Large and Sadler 1999). We estimate an angular diameter of ~30 arcmin and obtain an average radio spectral index of alpha = -0.6 +- 0.1 which indicates the non-thermal nature of G332.5-5.6. Fresh analysis of existing ROSAT X-ray data in the vicinity also confirms the existence of the SNR. The distance to G332.5-5.6 has been independently estimated by Reynoso and Green (2007) as 3.4 kpc based on measurements of the HI lambda21 cm line seen in absorption against the continuum emission. Our cruder estimates via assumptions on the height of the dust layer (3.1 kpc) and using the Sigma-D relation (4 kpc) are in good agreement.Comment: 14 pages, 18 figures. Accepted for publishing in the MNRA

    Many-worlds interpretation of quantum theory and mesoscopic anthropic principle

    Full text link
    We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.Comment: 11 page

    105110^{51} Ergs: The Evolution of Shell Supernova Remnants

    Full text link
    This paper reports on a workshop hosted by the University of Minnesota, March 23-26, 1997. It addressed fundamental dynamical issues associated with the evolution of shell supernova remnants and the relationships between supernova remnants and their environments. The workshop considered, in addition to classical shell SNRs, dynamical issues involving X-ray filled composite remnants and pulsar driven shells, such as that in the Crab Nebula. Approximately 75 participants with wide ranging interests attended the workshop. An even larger community helped through extensive on-line debates prior to the meeting. Each of the several sessions, organized mostly around chronological labels, also addressed some underlying, general physical themes: How are SNR dynamics and structures modified by the character of the CSM and the ISM and vice versa? How are magnetic fields generated in SNRs and how do magnetic fields influence SNRs? Where and how are cosmic-rays (electrons and ions) produced in SNRs and how does their presence influence or reveal SNR dynamics? How does SNR blast energy partition into various components over time and what controls conversion between components? In lieu of a proceedings volume, we present here a synopsis of the workshop in the form of brief summaries of the workshop sessions. The sharpest impressions from the workshop were the crucial and under-appreciated roles that environments have on SNR appearance and dynamics and the critical need for broad-based studies to understand these beautiful, but enigmatic objects. \\Comment: 54 pages text, no figures, Latex (aasms4.sty). submitted to the PAS

    Pulsar PSR B0656+14, the Monogem Ring, and the Origin of the `Knee' in the Primary Cosmic Ray Spectrum

    Full text link
    The Monogem ring is a bright, diffuse, 25-degree-diameter supernova remnant easily visible in soft X-ray images of the sky. Projected within the ring is a young radio pulsar, PSR B0656+14. An association between the remnant and pulsar has been considered, but was seemingly ruled out by the direction and magnitude of the pulsar proper motion and by a distance estimate that placed the pulsar twice as far from Earth as the remnant. Here we show that in fact the pulsar was born very close to the center of the expanding remnant, both in distance and projection. The inferred pulsar and remnant ages are in good agreement. The conclusion that the pulsar and remnant were born in the same supernova explosion is nearly inescapable. The remnant distance and age are in remarkable concordance with the predictions of a model for the primary cosmic ray energy spectrum in which the `knee' feature is produced by a single dominant source.Comment: 4 pages, to appear in the Astrophys. J. Lett. Full size color figure can be found at http://www.thorsett.org/researc

    The Distance Scale of Planetary Nebulae

    Get PDF
    By collecting distances from the literature, a set of 73 planetary nebulae with mean distances of high accuracy is derived. This sample is used for recalibration of the mass-radius relationship, used by many statistical distance methods. An attempt to correct for a statistical peculiarity, where errors in the distances influences the mass--radius relationship by increasing its slope, has been made for the first time. Distances to PNe in the Galactic Bulge, derived by this new method as well as other statistical methods from the last decade, are then used for the evaluation of these methods as distance indicators. In order of achieving a Bulge sample that is free from outliers we derive new criteria for Bulge membership. These criteria are much more stringent than those used hitherto, in the sense that they also discriminate against background objects. By splitting our Bulge sample in two, one with optically thick (small) PNe and one with optically thin (large) PNe, we find that our calibration is of higher accuracy than most other calibrations. Differences between the two subsamples, we believe, are due to the incompleteness of the Bulge sample, as well as the dominance of optical diameters in the ``thin'' sample and radio diameters in the ``thick'' sample. Our final conclusion is that statistical methods give distances that are at least as accurate as the ones obtained from many individual methods. Also, the `long' distance scale of Galactic PNe is confirmed.Comment: 15 pages, 9 figures, accepted for publication in A&

    Evidence for Reionization at z ~ 6: Detection of a Gunn-Peterson Trough in a z=6.28 Quasar

    Get PDF
    We present moderate resolution Keck spectroscopy of quasars at z=5.82, 5.99 and 6.28, discovered by the Sloan Digital Sky Survey (SDSS). We find that the Ly Alpha absorption in the spectra of these quasars evolves strongly with redshift. To z~5.7, the Ly Alpha absorption evolves as expected from an extrapolation from lower redshifts. However, in the highest redshift object, SDSSp J103027.10+052455.0 (z=6.28), the average transmitted flux is 0.0038+-0.0026 times that of the continuum level over 8450 A < lambda < 8710 A (5.95<z(abs)<6.16), consistent with zero flux. Thus the flux level drops by a factor of >150, and is consistent with zero flux in the Ly Alpha forest region immediately blueward of the Ly Alpha emission line, compared with a drop by a factor of ~10 at z(abs)~5.3. A similar break is seen at Ly Beta; because of the decreased oscillator strength of this transition, this allows us to put a considerably stronger limit, tau(eff) > 20, on the optical depth to Ly Alpha absorption at z=6. This is a clear detection of a complete Gunn-Peterson trough, caused by neutral hydrogen in the intergalactic medium. Even a small neutral hydrogen fraction in the intergalactic medium would result in an undetectable flux in the Ly Alpha forest region. Therefore, the existence of the Gunn-Peterson trough by itself does not indicate that the quasar is observed prior to the reionization epoch. However, the fast evolution of the mean absorption in these high-redshift quasars suggests that the mean ionizing background along the line of sight to this quasar has declined significantly from z~5 to 6, and the universe is approaching the reionization epoch at z~6.Comment: Revised version (2001 Sep 4) accepted by the Astronomical Journal (minor changes

    Search for Pairs of Isolated Radio Pulsars - Components in Disrupted Binary Systems

    Full text link
    We have developed a method for analyzing the kinematic association of isolated relativistic objects - possible remnants of disrupted close binary systems. We investigate pairs of fairly young radio pulsars with known proper motions and estimated distances (dispersion measures) that are spaced no more than 2-3 kpc apart. Using a specified radial velocity distribution for these objects, we have constructed 100-300 thousand trajectories of their possible motion in the Galactic gravitational field on a time scale of several million years. The probabilities of their close encounters at epochs consistent with the age of the younger pulsar in the pair are analyzed. When these probabilities exceed considerably their reference values obtained by assuming a purely random encounter between the pulsars under consideration, we conclude that the objects may have been gravitationally bound in the past. As a result, we have detected six pulsar pairs (J0543+2329/J0528+2200, J1453-6413/J1430-6623, J2354+6155/J2321+6024, J1915+1009/J1909+1102, J1832-0827/J1836-1008, and J1917+1353/J1926+1648) that are companions in disrupted binary systems with a high probability. Estimates of their kinematic ages and velocities at binary disruption and at the present epoch are provided
    corecore