529 research outputs found
Fat fractal percolation and k-fractal percolation
We consider two variations on the Mandelbrot fractal percolation model. In
the k-fractal percolation model, the d-dimensional unit cube is divided in N^d
equal subcubes, k of which are retained while the others are discarded. The
procedure is then iterated inside the retained cubes at all smaller scales. We
show that the (properly rescaled) percolation critical value of this model
converges to the critical value of ordinary site percolation on a particular
d-dimensional lattice as N tends to infinity. This is analogous to the result
of Falconer and Grimmett that the critical value for Mandelbrot fractal
percolation converges to the critical value of site percolation on the same
d-dimensional lattice. In the fat fractal percolation model, subcubes are
retained with probability p_n at step n of the construction, where (p_n) is a
non-decreasing sequence with \prod p_n > 0. The Lebesgue measure of the limit
set is positive a.s. given non-extinction. We prove that either the set of
connected components larger than one point has Lebesgue measure zero a.s. or
its complement in the limit set has Lebesgue measure zero a.s.Comment: 27 pages, 3 figure
Regional and fine-scale local adaptation in salinity tolerance in Daphnia inhabiting contrasting clusters of inland saline waters
Understanding the spatial scales at which organisms can adapt to strong natural and human-induced environmental gradients is important. Salinization is a key threat to biodiversity, ecosystem functioning and the provision of ecosystem services of freshwater systems. Clusters of naturally saline habitats represent ideal test cases to study the extent and scale of local adaptation to salinization. We studied local adaptation of the water flea Daphnia magna, a key component of pond food webs, to salinity in two contrasting landscapesâa dense cluster of sodic bomb crater ponds and a larger-scale cluster of soda pans. We show regional differentiation in salinity tolerance reflecting the higher salinity levels of soda pans versus bomb crater ponds. We found local adaptation to differences in salinity levels at the scale of tens of metres among bomb crater pond populations but not among geographically more distant soda pan populations. More saline bomb crater ponds showed an upward shift of the minimum salt tolerance observed across clones and a consequent gradual loss of less tolerant clones in a nested pattern. Our results show evolutionary adaptation to salinity gradients at different spatial scales, including fine-tuned local adaptation in neighbouring habitat patches in a natural landscape
Adaptive and non-adaptive divergence in a common landscape
Species in a common landscape often face similar selective environments. The capacity of organisms to adapt to these environments may be largely species specific. Quantifying shared and unique adaptive responses across species within landscapes may thus improve our understanding of landscape-moderated biodiversity patterns. Here we test to what extent populations of two coexisting and phylogenetically related fishesâthree-spined and nine-spined sticklebackâdiffer in the strength and nature of neutral and adaptive divergence along a salinity gradient. Phenotypic differentiation, neutral genetic differentiation and genomic signatures of adaptation are stronger in the three-spined stickleback. Yet, both species show substantial phenotypic parallelism. In contrast, genomic signatures of adaptation involve different genomic regions, and are thus non-parallel. The relative contribution of spatial and environmental drivers of population divergence in each species reflects different strategies for persistence in the same landscape. These results provide insight in the mechanisms underlying variation in evolutionary versatility and ecological success among species within landscapes
The effect of temperature and predation on performance in monoculture and in competition in three Daphniidae differing in body size
Zooplankton body size shows a strong association with temperature, competition, and predation. Global warming affects all three drivers of body size and is thus expected to lead to substantial changes in zooplankton community composition and body size distributions. To disentangle the isolated and joint effect of temperature, competition, and fish predation on species biomass and community composition in zooplankton, we monitored population biomasses of three Daphniidae species that differ in body size (Daphnia magna, Daphnia pulex, and Ceriodaphnia reticulata) for 20âdays, manipulating competition (monoculture, pairwise trials, and three-species communities), temperature (20°C, 24°C, and 28°C) and presence or absence of fish predation. In the absence of predation, D. magna dominated in all competition experiments, even at high temperatures. D. magna went extinct, however, in the predation treatments at 24°C and 28°C. D. pulex outcompeted C. reticulata and was negatively affected by predation and high temperature. C. reticulata did not reduce biomass at high temperatures and was negatively affected by all competition trials, but was positively affected by predation. Our results indicate that the two larger-bodied species are more negatively affected by the combination of temperature and predation than the smallest species. While higher temperatures reduced the biomass of the larger-bodied species, it did not fundamentally change their ability to dominate over the smallest species in competition. The combined effect of warming and predation changed community composition more fundamentally, resulting in the dominance of small-bodied species. This can have important ecosystem-wide impacts, such as the transition to turbid, algae-dominated systems
Hostâparasite dynamics shaped by temperature and genotype: Quantifying the role of underlying vital rates
1. Global warming challenges the persistence of local populations, not only through heat-induced stress, but also through indirect biotic changes. We study the interactive effects of temperature, competition and parasitism in the water flea Daphnia magna.
2. We carried out a common garden experiment monitoring the dynamics of Daphnia populations along a temperature gradient. Halfway through the experiment, all populations became infected with the ectoparasite Amoebidium parasiticum, enabling us to study the interactive effects of temperature and parasite dynamics. We combined Integral Projection Models with epidemiological models, parameterized using the experimental data on the performance of individuals within dynamic populations. This enabled us to quantify the contribution of different vital rates and epidemiological parameters to population fitness across temperatures and Daphnia clones originating from two latitudes.
3. Interactions between temperature and parasitism shaped competition, where Belgian clones performed better under infection than Norwegian clones. Infected Daphnia populations performed better at higher than at lower temperatures, mainly due to an increased host capability of reducing parasite loads. Temperature strongly affected individual vital rates, but effects largely cancelled out on a population-level. In contrast, parasitism strongly reduced fitness through consistent negative effects on all vital rates. As a result, temperature-mediated parasitism was more important than the direct effects of temperature in shaping population dynamics. Both the outcome of the competition treatments and the observed extinction patterns support our modelling results.
4. Our study highlights that shifts in biotic interactions can be equally or more important for responses to warming than direct physiological effects of warming, emphasizing that we need to include such interactions in our studies to predict the competitive ability of natural populations experiencing global warming
Operational Framework to Quantify âQuality of Recyclingâ across Different Material Types
Many pledges and laws are setting recycling targets without clearly defining quality of recycling. Striving to close this gap, this study presents an operational framework to quantify quality of recycling. The framework comprises three dimensions: the Virgin Displacement Potential (VDP); In-Use Stocks Lifetime (IUSL); and Environmental Impact (EI). The VDP indicates to what extent a secondary material can be used as a substitute for virgin material; the IUSL indicates how much of a certain material is still functional in society over a given time frame, and the EI is a measure of the environmental impact of a recycling process. The three dimensions are aggregated by plotting them in a distance-to-target graph. Two example calculations are included on poly(ethylene terephthalate) (PET) and glass. The results indicate that the recycling of bottle and container glass collected via a deposit-refund system has the lowest distance-to-target, at 1.05, and, thus, the highest quality of recycling. For PET bottles, the highest quality of recycling is achieved in closed-loop mechanical recycling of bottles (distance to optimal quality of 0.96). Furthermore, sensitivity analysis indicates that certain parameters, e.g., the collection rate for PET bottles, can reduce the distance-to-target to 0.75 when all bottles are collected for recycling
Lack of phylogeographic structure in the freshwater cyanobacterium <i>Microcystis aeruginosa</i> suggests global dispersal
Background: Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographicstructuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwatercyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography.Methodology/Principal Findings: The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNAinternal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS typeswere detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected.Conclusions/Significance: The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution
Constitutive expression of CD26/dipeptidylpeptidase IV on peripheral blood B lymphocytes of patients with B chronic lymphocytic leukaemia
We have investigated the expression of the ectoenzyme dipeptidylpeptidase IV (DPP IV)/CD26 on lymphocytes obtained from patients with B chronic lymphocytic leukaemia (B-CLL) and compared it with healthy subjects. Using two-colour immunofluorescence analysis with CD26 and CD20 or CD23 monoclonal antibodies, CD26 was found undetectable on peripheral resting B-cells (CD20+ CD23â) from normal donors whereas it was expressed on B-cells activated in vitro with interleukin (IL)-4 and Staphylococcus aureus strain cowan I (CD20+ CD23+). The expression of CD26 on leukaemic B-cells (CD20+ CD23+) was clearly induced in 22 out of 25 patients examined. Consequently, induced levels of CD26 cell surface expression on either normal activated and malignant B-cells coincided with the enhancement of DPP IV activity detected on the surface of these cells. Reverse transcription polymerase chain reaction analyses showed that the transcript levels of the CD26 gene was higher in normal activated B-cells and B-CLL cells than in resting B-cells, suggesting that CD26 was expressed at the level of transcriptional activation. These observations provide evidence of the abnormal expression of DPPIV/CD26 in B-CLL which, therefore, may be considered as a novel marker for B-CLL. Further investigation in relation to CD26 expression and other B malignancies needs to be defined. © 1999 Cancer Research Campaig
- âŠ