261 research outputs found

    Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque

    Get PDF
    There are substantial differences across species in the organisation and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration 'thin' spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the expression of Kv3.1b in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labelled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons

    Eine neue Methode zur Gewinnung von 1-Hydrazino-phthalazin

    Get PDF
    Das 4-Chlor-1-hydrazino-phthalazin(III), das in guter Ausbeute uber drei Synthesestufen aus Phthalsaureanhydrid erhalten wird, liisst sich hydrogenolytisch an Palladium-Katalysatoren glatt zum 1-Hydrazinophthalazin(VI) entchlorieren. Analog verliiuft auch die Hydrogenolyse von 4-Chlor-1-(2H) phthalazinon(IV) zum 1-(2H) Phthalazinon(V). Bei diesen Hydrogenolysen werden keine Nebenreaktionen festgestellt

    TOPDB: topology data bank of transmembrane proteins

    Get PDF
    The Topology Data Bank of Transmembrane Proteins (TOPDB) is the most complete and comprehensive collection of transmembrane protein datasets containing experimentally derived topology information currently available. It contains information gathered from the literature and from public databases available on the internet for more than a thousand transmembrane proteins. TOPDB collects details of various experiments that were carried out to learn about the topology of particular transmembrane proteins. In addition to experimental data from the literature, an extensive collection of structural data was also compiled from PDB and from PDBTM. Because topology information is often incomplete, for each protein in the database the most probable topology that is consistent with the collected experimental constraints was also calculated using the HMMTOP transmembrane topology prediction algorithm. Each record in TOPDB also contains information on the given protein sequence, name, organism and cross references to various other databases. The web interface of TOPDB includes tools for searching, relational querying and data browsing as well as for visualization. TOPDB is designed to bridge the gap between the number of transmembrane proteins available in sequence databases and the publicly accessible topology information of experimentally or computationally studied transmembrane proteins. TOPDB is available at http://topdb.enzim.hu

    TOPDOM: database of domains and motifs with conservative location in transmembrane proteins

    Get PDF
    Summary: The TOPDOM database is a collection of domains and sequence motifs located consistently on the same side of the membrane in α-helical transmembrane proteins. The database was created by scanning well-annotated transmembrane protein sequences in the UniProt database by specific domain or motif detecting algorithms. The identified domains or motifs were added to the database if they were uniformly annotated on the same side of the membrane of the various proteins in the UniProt database. The information about the location of the collected domains and motifs can be incorporated into constrained topology prediction algorithms, like HMMTOP, increasing the prediction accuracy

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification

    Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia

    Get PDF
    This paper describes molecular genetic identification of one third of the skeletal remains of 88 victims of postwar (June 1945) killings found in the Konfin I mass grave in Slovenia. Living relatives were traced for 36 victims. We analyzed 84 right femurs and compared their genetic profiles to the genetic material of living relatives. We cleaned the bones, removed surface contamination, and ground the bones into powder. Prior to DNA isolation using Biorobot EZ1 (Qiagen), the powder was decalcified. The nuclear DNA of the samples was quantified using the real-time polymerase chain reaction method. We extracted 0.8 to 100 ng DNA/g of bone powder from 82 bones. Autosomal genetic profiles and Y-chromosome haplotypes were obtained from 98% of the bones, and mitochondrial DNA (mtDNA) haplotypes from 95% of the bones for the HVI region and from 98% of the bones for the HVII region. Genetic profiles of the nuclear and mtDNA were determined for reference persons. For traceability in the event of contamination, we created an elimination database including genetic profiles of the nuclear and mtDNA of all persons that had been in contact with the skeletal remains. When comparing genetic profiles, we matched 28 of the 84 bones analyzed with living relatives (brothers, sisters, sons, daughters, nephews, or cousins). The statistical analyses showed a high confidence of correct identification for all 28 victims in the Konfin I mass grave (posterior probability ranged from 99.9% to more than 99.999999%)

    NANOG Reporter Cell Lines Generated by Gene Targeting in Human Embryonic Stem Cells

    Get PDF
    Background: Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. Methodology/Principal Findings: To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOG high and NANOG low hESCs, providing candidates for NANOG downstream targets hESCs. Conclusion/Significance: The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANO

    Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns.

    Get PDF
    Narcolepsy is a chronic sleep disorder, likely with an autoimmune component. During 2009 and 2010, a link between A(H1N1)pdm09 Pandemrix vaccination and onset of narcolepsy was suggested in Scandinavia. In this study, we searched for autoantibodies related to narcolepsy using a neuroanatomical array: rat brain sections were processed for immunohistochemistry/double labeling using patient sera/cerebrospinal fluid as primary antibodies. Sera from 89 narcoleptic patients, 52 patients with other sleep-related disorders (OSRDs), and 137 healthy controls were examined. Three distinct patterns of immunoreactivity were of particular interest: pattern A, hypothalamic melanin-concentrating hormone and proopiomelanocortin but not hypocretin/orexin neurons; pattern B, GABAergic cortical interneurons; and pattern C, mainly globus pallidus neurons. Altogether, 24 of 89 (27%) narcoleptics exhibited pattern A or B or C. None of the patterns were exclusive for narcolepsy but were also detected in the OSRD group at significantly lower numbers. Also, some healthy controls exhibited these patterns. The antigen of pattern A autoantibodies was identified as the common C-terminal epitope of neuropeptide glutamic acid-isoleucine/alpha-melanocyte-stimulating hormone (NEI/alphaMSH) peptides. Passive transfer experiments on rat showed significant effects of pattern A human IgGs on rapid eye movement and slow-wave sleep time parameters in the inactive phase and EEG theta-power in the active phase. We suggest that NEI/alphaMSH autoantibodies may interfere with the fine regulation of sleep, contributing to the complex pathogenesis of narcolepsy and OSRDs. Also, patterns B and C are potentially interesting, because recent data suggest a relevance of those brain regions/neuron populations in the regulation of sleep/arousal

    An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions.

    Get PDF
    Hereditary sensory neuropathy type 1 (HSN1) is caused by mutations in the SPTLC1 or SPTLC2 sub-units of the enzyme serine palmitoyltransferase, resulting in the production of toxic 1-deoxysphingolipid bases (DSBs). We used induced pluripotent stem cells (iPSCs) from patients with HSN1 to determine whether endogenous DSBs are neurotoxic, patho-mechanisms of toxicity and response to therapy. HSN1 iPSC-derived sensory neurons (iPSCdSNs) endogenously produce neurotoxic DSBs. Complex gangliosides, which are essential for membrane micro-domains and signaling, are reduced, and neurotrophin signaling is impaired, resulting in reduced neurite outgrowth. In HSN1 myelinating cocultures, we find a major disruption of nodal complex proteins after 8 weeks, which leads to complete myelin breakdown after 6 months. HSN1 iPSC models have, therefore, revealed that SPTLC1 mutation alters lipid metabolism, impairs the formation of complex gangliosides, and reduces axon and myelin stability. Many of these changes are prevented by l-serine supplementation, supporting its use as a rational therapy

    Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival

    Get PDF
    Nitric oxide (NO) is an intracellular messenger in several cell systems, but its contribution to embryonic stem cell (ESC) biology has not been characterized. Exposure of ESCs to low concentrations (2–20 μM) of the NO donor diethylenetriamine NO adduct confers protection from apoptosis elicited by leukaemia inhibitory factor (LIF) withdrawal. NO blocked caspase 3 activation, PARP degradation, downregulation of the pro-apoptotic genes Casp7, Casp9, Bax and Bak1 and upregulation of the anti-apoptotic genes Bcl-2 111, Bcl-2 and Birc6. These effects were also observed in cells overexpressing eNOS. Exposure of LIF-deprived mESCs to low NO prevented the loss of expression of self-renewal genes (Oct4, Nanog and Sox2) and the SSEA marker. Moreover, NO blocked the differentiation process promoted by the absence of LIF and bFGF in mouse and human ESCs. NO treatment decreased the expression of differentiation markers, such as Brachyury, Gata6 and Gata4. Constitutive overexpression of eNOS in cells exposed to LIF deprivation maintained the expression of self-renewal markers, whereas the differentiation genes were repressed. These effects were reversed by addition of the NOS inhibitor L-NMMA. Altogether, the data suggest that low NO has a role in the regulation of ESC differentiation by delaying the entry into differentiation, arresting the loss of self-renewal markers and promoting cell survival by inhibiting apoptosis
    • …
    corecore