812 research outputs found

    Thermoelectric power factor limit of a 1D nanowire

    Full text link
    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effect in practice. Here we point out that there is an upper limit to the thermoelectric power factor of non-ballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasi-ballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit predicts that a competitive power factor, on the order of mW/m-K^2, can be achieved by a single 1D electronic channel in state-of-the-art semiconductor nanowires with small cross-section and high crystal quality

    Ultrafast absorption kinetics of NADH in folded and unfolded conformations

    Get PDF
    The non-radiative energy transfer is shown to occur on a ~3ps time scale for NADH in the folded form in H2O. Addition of methanol thermodynamically favours the open form, for which energy transfer does not occur

    Exact diagonalisation of 1-d interacting spinless Fermions

    Full text link
    We acquire a method of constructing an infinite set of exact eigenfunctions of 1--d interacting spinless Fermionic systems. Creation and annihilation operators for the interacting system are found and thereby the many--body Hamiltonian is diagonalised. The formalism is applied to several examples. One example is the theory of Jack polynomials. For the Calogero-Moser-Sutherland Hamiltonian a direct proof is given that the asymptotic Bethe Ansatz is correct.Comment: 33 page

    Diffusion in spatially and temporarily inhomogeneous media: Effects of turbulent mixing

    Get PDF
    We consider diffusion of a passive substance C in a phase-separating nonmiscible binary alloy under turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phases A and B, leading to a spatially and temporarily dependent diffusion ¿coefficient¿ in the diffusion equation plus convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the Cahn-Hilliard type evolution equation of the medium and the diffusion equation (both, therefore, supplemented by a convective term). It is shown that the formerly observed prolonged anomalous diffusion [H. Lehr, F. Sagués, and J.M. Sancho, Phys. Rev. E 54, 5028 (1996)] is no longer seen if a flow of sufficient intensity is supplied

    Grass or Trees? Performance of riparian buffers under natural rainfall conditions, Australia

    Get PDF
    Riparian vegetation can trap sediment and nutrients derived from hillslopes. Most research into the effectiveness of riparian buffers has been experimental and little quantitative data exists on performance under natural field conditions. This study reports on grass and tree buffer performance under natural rainfall conditions in two contrasting Australian environments. Buffers receiving runoff from hillslopes cropped with bananas were monitored over a 4-year period in the wet topics of Far North Queensland (FNQ). Runoff, bedload and suspended loads were measured leaving the crop and leaving 15 m wide dense grass and remnant rainforest riparian buffers. The grass buffer was able to trap \u3e80% of incoming bedload and between 30 and 50% of the suspended sediment and nutrient loads. An adjacent rainforest buffer acted as a temporary store of bedload, and a source area for suspended material. Grass and plantation Eucalyptus globulus buffers receiving runoff from grazed pasture were monitored over a 4-year period in a Mediterranean environment of SW Western Australia. Subsurface flow dominated nutrient and sediment transport in this location. A key result was the seasonal difference between the grass and E. globulus buffers. Sediment and nutrient transport occurred throughout the year in the E. globulus buffer, but only in the winter in the grass buffer. Half the annual loads moving within the E. globulus buffer were transported during intense summer storms. This study demonstrates the benefits of grass buffers, particularly on sloping tropical cropped land and identifies limitations on the effectiveness of tree buffers, although these may have ecological benefits

    The first metazoa living in permanently anoxic conditions

    Get PDF
    Background: Several unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity.Results: During the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera (Spinoloricus nov. sp., Rugiloricus nov. sp. and Pliciloricus nov. sp.) new to science. Using radioactive tracers, biochemical analyses, quantitative X-ray microanalysis and infrared spectroscopy, scanning and transmission electron microscopy observations on ultra-sections, we provide evidence that these organisms are metabolically active and show specific adaptations to the extreme conditions of the deep basin, such as the lack of mitochondria, and a large number of hydrogenosome-like organelles, associated with endosymbiotic prokaryotes.Conclusions: This is the first evidence of a metazoan life cycle that is spent entirely in permanently anoxic sediments. Our findings allow us also to conclude that these metazoans live under anoxic conditions through an obligate anaerobic metabolism that is similar to that demonstrated so far only for unicellular eukaryotes. The discovery of these life forms opens new perspectives for the study of metazoan life in habitats lacking molecular oxygen

    The volume densities of giant molecular clouds in M83

    Get PDF
    Using observed GALEX far-ultraviolet (FUV) fluxes and VLA images of the 21-cm HI column densities, along with estimates of the local dust abundances, we measure the volume densities of a sample of actively star-forming giant molecular clouds (GMCs) in the nearby spiral galaxy M83 on a typical resolution scale of 170 pc. Our approach is based on an equilibrium model for the cycle of molecular hydrogen formation on dust grains and photodissociation under the influence of the FUV radiation on the cloud surfaces of GMCs. We find a range of total volume densities on the surface of GMCs in M83, namely 0.1 - 400 cm-3 inside R25, 0.5 - 50 cm-3 outside R25 . Our data include a number of GMCs in the HI ring surrounding this galaxy. Finally, we discuss the effects of observational selection, which may bias our results.Comment: 9 pages, 11 figure

    Fidelity and level correlations in the transition from regularity to chaos

    Full text link
    Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identical. The result is compared with the susceptibility of chaotic systems against random perturbations. Regular systems are more susceptible against random perturbations than chaotic ones.Comment: 7 pages, 1 figur

    Fluorescence kinetics of flavin adenine dinucleotide in different microenvironments

    Get PDF
    Fluorescence kinetics of flavin adenine dinucleotide was measured in a wide time and spectral range in different media, affecting its intra- end extramolecular interactions, and analyzed by a new method based on compressed sensing

    Food groups and risk of coronary heart disease, stroke and heart failure : a systematic review and dose-response meta-analysis of prospective studies

    Get PDF
    Background: Despite growing evidence for food-based dietary patterns' potential to reduce cardiovascular disease risk, knowledge about the amounts of food associated with the greatest change in risk of specific cardiovascular outcomes and about the quality of meta-evidence is limited. Therefore, the aim of this meta-analysis was to synthesize the knowledge about the relation between intake of 12 major food groups (whole grains, refined grains, vegetables, fruits, nuts, legumes, eggs, dairy, fish, red meat, processed meat, and sugar-sweetened beverages [SSB]) and the risk of coronary heart disease (CHD), stroke and heart failure (HF). Methods: We conducted a systematic search in PubMed and Embase up to March 2017 for prospective studies. Summary risk ratios (RRs) and 95% confidence intervals (95% CI) were estimated using a random effects model for highest versus lowest intake categories, as well as for linear and non-linear relationships. Results: Overall, 123 reports were included in the meta-analyses. An inverse association was present for whole grains (RRCHD: 0.95 (95% CI: 0.92-0.98), RRHF: 0.96 (0.95-0.97)), vegetables and fruits (RRCHD: 0.97 (0.96-0.99), and 0.94 (0.90-0.97); RRstroke: 0.92 (0.86-0.98), and 0.90 (0.84-0.97)), nuts (RRCHD: 0.67 (0.43-1.05)), and fish consumption (RRCHD: 0.88 (0.79-0.99), RRstroke: 0.86 (0.75-0.99), and RRHF: 0.80 (0.67-0.95)), while a positive association was present for egg (RRHF: 1.16 (1.03-1.31)), red meat (RRCHD: 1.15 (1.08-1.23), RRstroke: 1.12 (1.06-1.17), RRHF: 1.08 (1.02-1.14)), processed meat (RRCHD: 1.27 (1.09-1.49), RRstroke: 1.17 (1.02-1.34), RRHF: 1.12 (1.05-1.19)), and SSB consumption (RRCHD: 1.17 (1.11-1.23), RRstroke: 1.07 (1.02-1.12), RRHF: 1.08 (1.05-1.12)) in the linear dose-response meta-analysis. There were clear indications for non-linear dose-response relationships between whole grains, fruits, nuts, dairy, and red meat and CHD. Conclusion: An optimal intake of whole grains, vegetables, fruits, nuts, legumes, dairy, fish, red and processed meat, eggs and SSB showed an important lower risk of CHD, stroke, and HF
    • …
    corecore