3,560 research outputs found
Modeling the momentum distributions of annihilating electron-positron pairs in solids
Measuring the Doppler broadening of the positron annihilation radiation or
the angular correlation between the two annihilation gamma quanta reflects the
momentum distribution of electrons seen by positrons in the
material.Vacancy-type defects in solids localize positrons and the measured
spectra are sensitive to the detailed chemical and geometric environments of
the defects. However, the measured information is indirect and when using it in
defect identification comparisons with theoretically predicted spectra is
indispensable. In this article we present a computational scheme for
calculating momentum distributions of electron-positron pairs annihilating in
solids. Valence electron states and their interaction with ion cores are
described using the all-electron projector augmented-wave method, and atomic
orbitals are used to describe the core states. We apply our numerical scheme to
selected systems and compare three different enhancement (electron-positron
correlation) schemes previously used in the calculation of momentum
distributions of annihilating electron-positron pairs within the
density-functional theory. We show that the use of a state-dependent
enhancement scheme leads to better results than a position-dependent
enhancement factor in the case of ratios of Doppler spectra between different
systems. Further, we demonstrate the applicability of our scheme for studying
vacancy-type defects in metals and semiconductors. Especially we study the
effect of forces due to a positron localized at a vacancy-type defect on the
ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised
manuscript submitted on November 14 200
Isomeric states close to doubly magic Sn studied with JYFLTRAP
The double Penning trap mass spectrometer JYFLTRAP has been employed to
measure masses and excitation energies for isomers in Cd,
Cd, Cd and Te, for isomers in In and
In, and for isomers in Sn and Sb. These first
direct mass measurements of the Cd and In isomers reveal deviations to the
excitation energies based on results from beta-decay experiments and yield new
information on neutron- and proton-hole states close to Sn. A new
excitation energy of 144(4) keV has been determined for Cd. A good
agreement with the precisely known excitation energies of Cd,
Sn, and Sb has been found.Comment: 10 pages, 6 figures, submitted to Phys. Rev.
Calculation of valence electron momentum densities using the projector augmented-wave method
We present valence electron Compton profiles calculated within the
density-functional theory using the all-electron full-potential projector
augmented-wave method (PAW). Our results for covalent (Si), metallic (Li, Al)
and hydrogen-bonded ((H_2O)_2) systems agree well with experiments and
computational results obtained with other band-structure and basis set schemes.
The PAW basis set describes the high-momentum Fourier components of the valence
wave functions accurately when compared with other basis set schemes and
previous all-electron calculations.Comment: Submitted to Journal of Physics and Chemistry of Solids on September
17 2004. Revised version submitted on December 13 200
Q_EC values of the Superallowed beta-Emitters 10-C, 34-Ar, 38-Ca and 46-V
The Q_EC values of the superallowed beta+ emitters 10-C, 34-Ar, 38-Ca and
46-V have been measured with a Penning-trap mass spectrometer to be 3648.12(8),
6061.83(8), 6612.12(7) and 7052.44(10) keV, respectively. All four values are
substantially improved in precision over previous results.Comment: 9 pages, 7 figures, 5 table
Precision mass measurements of radioactive nuclei at JYFLTRAP
The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic
masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic
masses of the neutron-deficient nuclei around the N = Z line were measured to
improve the understanding of the rp-process path and the SbSnTe cycle.
Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z =
46) nuclei have been measured. The physics impacts on the nuclear structure and
the r-process paths are reviewed. A better understanding of the nuclear
deformation is presented by studying the pairing energy around A = 100.Comment: 4 pages and 4 figures, RNB7 conf. pro
Electron-capture branch of 100Tc and tests of nuclear wave functions for double-beta decays
We present a measurement of the electron-capture branch of Tc. Our
value, , implies that the
Mo neutrino absorption cross section to the ground state of Tc
is roughly one third larger than previously thought. Compared to previous
measurements, our value of prevents a smaller disagreement with
QRPA calculations relevant to double- decay matrix elements
Mass measurements in the vicinity of the doubly-magic waiting point 56Ni
Masses of 56,57Fe, 53Co^m, 53,56Co, 55,56,57Ni, 57,58Cu, and 59,60Zn have
been determined with the JYFLTRAP Penning trap mass spectrometer at IGISOL with
a precision of dm/m \le 3 x 10^{-8}. The QEC values for 53Co, 55Ni, 56Ni, 57Cu,
58Cu, and 59Zn have been measured directly with a typical precision of better
than 0.7 keV and Coulomb displacement energies have been determined. The Q
values for proton captures on 55Co, 56Ni, 58Cu, and 59Cu have been measured
directly. The precision of the proton-capture Q value for 56Ni(p,gamma)57Cu,
Q(p,gamma) = 689.69(51) keV, crucial for astrophysical rp-process calculations,
has been improved by a factor of 37. The excitation energy of the proton
emitting spin-gap isomer 53Co^m has been measured precisely, Ex = 3174.3(10)
keV, and a Coulomb energy difference of 133.9(10) keV for the 19/2- state has
been obtained. Except for 53Co, the mass values have been adjusted within a
network of 17 frequency ratio measurements between 13 nuclides which allowed
also a determination of the reference masses 55Co, 58Ni, and 59Cu.Comment: 14 pages, 13 figures, submitted to Phys. Rev.
Drone Measurements of Solar-Induced Chlorophyll Fluorescence Acquired with a Low-Weight DFOV Spectrometer System
Solar induced chlorophyll fluorescence (SIF) emitted from plant canopies is now retrievable from space. In addition, SIF is now also routinely measured from fixed tower platforms. However there is a scale gap between temporally continuous tower measurements and spatially coarse satellite retrievals that is now being bridged by drone technology. Drone retrievals of SIF can be used to help unravel the structural and species component dependencies that occur across space on the scale of meters in heterogeneous vegetation types. Also when flown at sufficient altitude, drones can be used to simulate, and potentially validate satellite retrievals of SIF. We flew a dual field of view spectrometer system, the Piccolo doppio, above a boreal forest with the aim of retrieving SIF. Our flights were designed to assess both spatial heterogeneity of SIF driven by changes in vegetation cover type and to simulate satellite pixels by flying at a relatively high altitude.Peer reviewe
Beta-decay branching ratios of 62Ga
Beta-decay branching ratios of 62Ga have been measured at the IGISOL facility
of the Accelerator Laboratory of the University of Jyvaskyla. 62Ga is one of
the heavier Tz = 0, 0+ -> 0+ beta-emitting nuclides used to determine the
vector coupling constant of the weak interaction and the Vud quark-mixing
matrix element. For part of the experimental studies presented here, the
JYFLTRAP facility has been employed to prepare isotopically pure beams of 62Ga.
The branching ratio obtained, BR= 99.893(24)%, for the super-allowed branch is
in agreement with previous measurements and allows to determine the ft value
and the universal Ft value for the super-allowed beta decay of 62Ga
- âŠ