285 research outputs found

    Neutron spectroscopy with the Spherical Proportional Counter

    Full text link
    A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of N2N_{2} with C2H6C_{2}H_{6} and pure N2N_{2} are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the 14N(n,p)C14{}^{14}N(n, p)C^{14} and 14N(n,α)B11{}^{14}N(n, \alpha)B^{11} reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a 252Cf{}^{252}Cf and a 241Am9Be{}^{241}Am-{}^{9}Be neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.Comment: 7 pages, 10 figure

    Ultra low energy results and their impact to dark matter and low energy neutrino physics

    Full text link
    We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scatteringComment: 14 pages,16 figure

    Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis.

    Get PDF
    Microsurgical resection of primary brain tumors located within or near eloquent areas is challenging. Primary aim is to preserve neurological function, while maximizing the extent of resection (EOR), to optimize long-term neurooncological outcomes and quality of life. Here, we review the combined integration of awake craniotomy and intraoperative MRI (IoMRI) for primary brain tumors, due to their multiple challenges. A systematic review of the literature was performed, in accordance with the Prisma guidelines. Were included 13 series and a total number of 527 patients, who underwent 541 surgeries. We paid particular attention to operative time, rate of intraoperative seizures, rate of initial complete resection at the time of first IoMRI, the final complete gross total resection (GTR, complete radiological resection rates), and the immediate and definitive postoperative neurological complications. The mean duration of surgery was 6.3 h (median 7.05, range 3.8-7.9). The intraoperative seizure rate was 3.7% (range 1.4-6; I^2 = 0%, P heterogeneity = 0.569, standard error = 0.012, p = 0.002). The intraoperative complete resection rate at the time of first IoMRI was 35.2% (range 25.7-44.7; I^2 = 66.73%, P heterogeneity = 0.004, standard error = 0.048, p < 0.001). The rate of patients who underwent supplementary resection after one or several IoMRI was 46% (range 39.8-52.2; I^2 = 8.49%, P heterogeneity = 0.364, standard error = 0.032, p < 0.001). The GTR rate at discharge was 56.3% (range 47.5-65.1; I^2 = 60.19%, P heterogeneity = 0.01, standard error = 0.045, p < 0.001). The rate of immediate postoperative complications was 27.4% (range 15.2-39.6; I^2 = 92.62%, P heterogeneity < 0.001, standard error = 0.062, p < 0.001). The rate of permanent postoperative complications was 4.1% (range 1.3-6.9; I^2 = 38.52%, P heterogeneity = 0.123, standard error = 0.014, p = 0.004). Combined use of awake craniotomy and IoMRI can help in maximizing brain tumor resection in selected patients. The technical obstacles to doing so are not severe and can be managed by experienced neurosurgery and anesthesiology teams. The benefits of bringing these technologies to bear on patients with brain tumors in or near language areas are obvious. The lack of equipoise on this topic by experienced practitioners will make it difficult to do a prospective, randomized, clinical trial. In the opinion of the authors, such a trial would be unnecessary and would deprive some patients of the benefits of the best available methods for their tumor resections

    Performances of Anode-resistive Micromegas for HL-LHC

    Full text link
    Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using \sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of \sim90 micrometers and a efficiency of ~98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using \sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of \sim90 micrometers and a efficiency of \sim98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.Comment: "Presented at the 2011 Hadron Collider Physics symposium (HCP-2011), Paris, France, November 14-18 2011, 3 pages, 6 figures.

    Micromegas in a Bulk

    Full text link
    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicineComment: 6 pages, 4 figure

    A novel large-volume Spherical Detector with Proportional Amplification read-out

    Get PDF
    A new type of radiation detector based on a spherical geometry is presented. The detector consists of a large spherical gas volume with a central electrode forming a radial electric field. Charges deposited in the conversion volume drift to the central sensor where they are amplified and collected. We introduce a small spherical sensor located at the center acting as a proportional amplification structure. It allows high gas gains to be reached and operates in a wide range of gas pressures. Signal development and the absolute amplitude of the response are consistent with predictions. Sub-keV energy threshold with good energy resolution is achieved. This new concept has been proven to operate in a simple and robust way and allows reading large volumes with a single read-out channel. The detector performance presently achieved is already close to fulfill the demands of many challenging projects from low energy neutrino physics to dark matter detection with applications in neutron, alpha and gamma spectroscopy.Comment: 13 pages, 13 figure

    Immunology Taught by Bacteria

    Get PDF
    It has been proposed that the innate immune system might discriminate living and virulent pathogens from dead or harmless microbes, but the molecular mechanisms by which this discrimination could occur remain unclear. Although studies of model antigens and adjuvants have illuminated important principles underlying immune responses, the specific immune responses made to living, virulent pathogens can only be discovered by studies of the living, virulent pathogens themselves. Here, I review what one particular bacterium, Legionella pneumophila, has taught us about the innate immune response. Pathogens differ greatly in the mechanisms they use to invade, replicate within, and transmit among their hosts. However, a theme that emerges is that the pathogenic activities sensed by host cells are conserved among multiple pathogenic bacteria. Thus, immunology taught by L. pneumophila may lead to a more general understanding of the host response to infection

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate
    corecore