977 research outputs found

    Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence

    Get PDF
    The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair production measurements were done using two independent methods simultaneously. The more complex method using a magnet spectrometer showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for publicatio

    Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons

    Get PDF
    We present the first experimental results on the use of a thick aligned Si crystal acting as a quarter wave plate to induce a degree of circular polarisation in a high energy linearly polarised photon beam. The linearly polarised photon beam is produced from coherent bremsstrahlung radiation by 178 GeV unpolarised electrons incident on an aligned Si crystal, acting as a radiator. The linear polarisation of the photon beam is characterised by measuring the asymmetry in electron-positron pair production in a Ge crystal, for different crystal orientations. The Ge crystal therefore acts as an analyser. The birefringence phenomenon, which converts the linear polarisation to circular polarisation, is observed by letting the linearly polarised photons beam pass through a thick Si quarter wave plate crystal, and then measuring the asymmetry in electron-positron pair production again for a selection of relative angles between the crystallographic planes of the radiator, analyser and quarter wave plate. The systematics of the difference between the measured asymmetries with and without the quarter wave plate are predicted by theory to reveal an evolution in the Stokes parameters from which the appearance of a circularly polarised component in the photon beam can be demonstrated. The measured magnitude of the circularly polarised component was consistent with the theoretical predictions, and therefore is in indication of the existence of the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for publicatio

    Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    Full text link
    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence phenomenon, the conversion of the linear polarisation of the photon beam into circular polarisation, was observed. This was achieved by letting the linearly polarised photon beam pass through a 10 cm thick Silicon single crystal that acted as a "quarter wave plate" (QWP) as suggested by N. Cabibbo et al.Comment: Presented at International workshop "Relativistic Channeling and Related Coherent Phenomena", Frascati (Rome) 23-26 March 200

    Coherent bremsstrahlung, boherent pair production, birefringence and polarimetry in the 20-170 GeV energy range using aligned crystals

    Get PDF
    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed for measurements of single photon properties of these phenomena including their polarization dependences. This is significant as the theoretical description of CB and CPP is an area of active theoretical debate and development. With the theoretical approach used in this paper both the measured cross sections and polarization observables are predicted very well. This indicates a proper understanding of CB and CPP up to energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to determine the polarization parameters in our measurements. New technologies for high energy photon beam optics including phase plates and polarimeters for linear and circular polarization are demonstrated in this experiment. Coherent bremsstrahlung for the strings-on-strings (SOS) orientation yields a larger enhancement for hard photons than CB for the channeling orientations of the crystal. Our measurements and our calculations indicate low photon polarizations for the high energy SOS photons.Comment: 23 pages, 27 figures, 2 tables, REVTeX4 two column

    Black Holes as Effective Geometries

    Full text link
    Gravitational entropy arises in string theory via coarse graining over an underlying space of microstates. In this review we would like to address the question of how the classical black hole geometry itself arises as an effective or approximate description of a pure state, in a closed string theory, which semiclassical observers are unable to distinguish from the "naive" geometry. In cases with enough supersymmetry it has been possible to explicitly construct these microstates in spacetime, and understand how coarse-graining of non-singular, horizon-free objects can lead to an effective description as an extremal black hole. We discuss how these results arise for examples in Type II string theory on AdS_5 x S^5 and on AdS_3 x S^3 x T^4 that preserve 16 and 8 supercharges respectively. For such a picture of black holes as effective geometries to extend to cases with finite horizon area the scale of quantum effects in gravity would have to extend well beyond the vicinity of the singularities in the effective theory. By studying examples in M-theory on AdS_3 x S^2 x CY that preserve 4 supersymmetries we show how this can happen.Comment: Review based on lectures of JdB at CERN RTN Winter School and of VB at PIMS Summer School. 68 pages. Added reference

    Intervention planning and modification of the BUMP intervention: a digital intervention for the early detection of raised blood pressure in pregnancy

    Get PDF
    Background: Hypertensive disorders in pregnancy, particularly pre-eclampsia, pose a substantial health risk for both maternal and foetal outcomes. The BUMP (Blood Pressure Self-Monitoring in Pregnancy) interventions are being tested in a trial. They aim to facilitate the early detection of raised blood pressure through self-monitoring. This article outlines how the self-monitoring interventions in the BUMP trial were developed and modified using the person-based approach to promote engagement and adherence. Methods: Key behavioural challenges associated with blood pressure self-monitoring in pregnancy were identified through synthesising qualitative pilot data and existing evidence, which informed guiding principles for the development process. Social cognitive theory was identified as an appropriate theoretical framework. A testable logic model was developed to illustrate the hypothesised processes of change associated with the intervention. Iterative qualitative feedback from women and staff informed modifications to the participant materials. Results: The evidence synthesis suggested women face challenges integrating self-monitoring into their lives and that adherence is challenging at certain time points in pregnancy (for example, starting maternity leave). Intervention modification included strategies to address adherence but also focussed on modifying outcome expectancies, by providing messages explaining pre-eclampsia and outlining the potential benefits of self-monitoring. Conclusions: With an in-depth understanding of the target population, several methods and approaches to plan and develop interventions specifically relevant to pregnant women were successfully integrated, to address barriers to behaviour change while ensuring they are easy to engage with, persuasive and acceptable

    First Observation and Measurement of the Decay K+- -> pi+- e+ e- gamma

    Get PDF
    Using the full data set of the NA48/2 experiment, the decay K+- -> pi+- e+ e- gamma is observed for the first time, selecting 120 candidates with 7.3 +- 1.7 estimated background events. With K+- -> pi+- pi0D as normalisation channel, the branching ratio is determined in a model-independent way to be Br(K+- -> pi+- e+ e- gamma, m_eegamma > 260 MeV/c^2) = (1.19 +- 0.12_stat +- 0.04_syst) x 10^-8. This measured value and the spectrum of the e+ e- gamma invariant mass allow a comparison with predictions of Chiral Perturbation Theory.Comment: 13 pages, 3 figures. Accepted for publication in Phys.Lett.

    ChPT tests at the NA48 and NA62 experiments at CERN

    Full text link
    The NA48/2 Collaboration at CERN has accumulated unprecedented statistics of rare kaon decays in the Ke4 modes: Ke4(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. The detailed study of form factors and branching rates, based on these data, has been completed recently. The results brings new inputs to low energy strong interactions description and tests of Chiral Perturbation Theory (ChPT) and lattice QCD calculations. In particular, new data support the ChPT prediction for a cusp in the π0π0\pi^0\pi^0 invariant mass spectrum at the two charged pions threshold for Ke4(00) decay. New final results from an analysis of about 400 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN during low intensity runs with minimum bias trigger configurations are presented. The results include a model-independent decay rate measurement and fits to ChPT description.Comment: XIIth International Conference on Heavy Quarks and Leptons 2014, Mainz, German

    Recent NA48/2 and NA62 results

    Full text link
    The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented statistics of rare kaon decays in the Ke4K_{e4} modes: Ke4(+)K_{e4}(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00)K_{e4}(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. It leads to the improved measurement of branching fractions and detailed form factor studies. New final results from the analysis of 381 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN are presented. The results include a decay rate measurement and fits to Chiral Perturbation Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy Interactions. March 22-29 2014." conferenc
    corecore