38 research outputs found

    Modelling the water balance of Lake Victoria (East Africa) – Part 1: Observational analysis

    Get PDF
    Lake Victoria is the largest lake in Africa and one of the two major sources of the Nile river. The water level of Lake Victoria is determined by its water balance, consisting of precipitation on the lake, evaporation from the lake, inflow from tributary rivers and lake outflow, controlled by two hydropower dams. Due to a scarcity of in situ observations, previous estimates of individual water balance terms are characterized by substantial uncertainties, which means that the water balance is often not closed independently. In this first part of a two-paper series, we present a water balance model for Lake Victoria, using state-of-the-art remote sensing observations, high-resolution reanalysis downscaling and outflow values recorded at the dam. The uncalibrated computation of the individual water balance terms yields lake level fluctuations that closely match the levels retrieved from satellite altimetry. Precipitation is the main cause of seasonal and interannual lake level fluctuations, and on average causes the lake level to rise from May to July and to fall from August to December. Finally, our results indicate that the 2004–2005 drop in lake level can be about half attributed to a drought in the Lake Victoria Basin and about half to an enhanced outflow, highlighting the sensitivity of the lake level to human operations at the outflow dam.</p

    Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections

    Get PDF
    Lake Victoria, the second largest freshwater lake in the world, is one of the major sources of the Nile river. The outlet to the Nile is controlled by two hydropower dams of which the allowed discharge is dictated by the Agreed Curve, an equation relating outflow to lake level. Some regional climate models project a decrease in precipitation and an increase in evaporation over Lake Victoria, with potential important implications for its water balance and resulting level. Yet, little is known about the potential consequences of climate change for the water balance of Lake Victoria. In this second part of a two-paper series, we feed a new water balance model for Lake Victoria presented in the first part with climate simulations available through the COordinated Regional Climate Downscaling Experiment (CORDEX) Africa framework. Our results reveal that most regional climate models are not capable of giving a realistic representation of the water balance of Lake Victoria and therefore require bias correction. For two emission scenarios (RCPs 4.5 and 8.5), the decrease in precipitation over the lake and an increase in evaporation are compensated by an increase in basin precipitation leading to more inflow. The future lake level projections show that the dam management scenario and not the emission scenario is the main controlling factor of the future water level evolution. Moreover, inter-model uncertainties are larger than emission scenario uncertainties. The comparison of four idealized future management scenarios pursuing certain policy objectives (electricity generation, navigation reliability and environmental conservation) uncovers that the only sustainable management scenario is mimicking natural lake level fluctuations by regulating outflow according to the Agreed Curve. The associated outflow encompasses, however, ranges from 14&thinsp;m3&thinsp;day−1 (−85&thinsp;%) to 200&thinsp;m3&thinsp;day−1 (+100&thinsp;%) within this ensemble, highlighting that future hydropower generation and downstream water availability may strongly change in the next decades even if dam management adheres to he Agreed Curve. Our results overall underline that managing the dam according to the Agreed Curve is a key prerequisite for sustainable future lake levels, but that under this management scenario, climate change might potentially induce profound changes in lake level and outflow volume.</p

    The biogeophysical effects of idealized land cover and land management changes in Earth system models

    Get PDF
    Land cover and land management change (LCLMC) has been highlighted for its critical role in mitigation scenarios in terms of both global mitigation and local adaptation. Yet, the climate effect of individual LCLMC options, their dependence on the background climate, and the local vs. non-local responses are still poorly understood across different Earth system models (ESMs). Here we simulate the climatic effects of LCLMC using three state-of-the-art ESMs, including the Community Earth System Model (CESM), the Max Planck Institute for Meteorology Earth System Model (MPI-ESM), and the European Consortium Earth System Model (EC-EARTH). We assess the LCLMC effects using four idealized experiments: (i) a fully afforested world, (ii) a world fully covered by cropland, (iii) a fully afforested world with extensive wood harvesting, and (iv) a full cropland world with extensive irrigation. In these idealized sensitivity experiments performed under present-day climate conditions, the effects of the different LCLMC strategies represent an upper bound for the potential of global mitigation and local adaptation. To disentangle the local and non-local effects from the LCLMC, a checkerboard-like LCLMC perturbation, i.e. alternating grid boxes with and without LCLMC, is applied. The local effects of deforestation on surface temperature are largely consistent across the ESMs and the observations, with a cooling in boreal latitudes and a warming in the tropics. However, the energy balance components driving the change in surface temperature show less consistency across the ESMs and the observations. Additionally, some biases exist in specific ESMs, such as a strong albedo response in CESM mid-latitudes and a soil-thawing-driven warming in boreal latitudes in EC-EARTH. The non-local effects on surface temperature are broadly consistent across ESMs for afforestation, though larger model uncertainty exists for cropland expansion. Irrigation clearly induces a cooling effect; however, the ESMs disagree regarding whether these are mainly local or non-local effects. Wood harvesting is found to have no discernible biogeophysical effects on climate. Our results overall underline the potential of ensemble simulations to inform decision-making regarding future climate consequences of land-based mitigation and adaptation strategies.ISSN:2190-4987ISSN:2190-497

    Attribution of global lake systems change to anthropogenic forcing

    Get PDF
    Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide

    Heat stored in the Earth system 1960–2020: where does the energy go?

    Get PDF
    The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m−2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.</p

    Scenario setup and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Model Intercomparison Project (ISIMIP3a)

    Get PDF
    This paper describes the rationale and the protocol of the first component of the third simulation round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a, http://www.isimip.org, last access: 2 November 2023) and the associated set of climate-related and direct human forcing data (CRF and DHF, respectively). The observation-based climate-related forcings for the first time include high-resolution observational climate forcings derived by orographic downscaling, monthly to hourly coastal water levels, and wind fields associated with historical tropical cyclones. The DHFs include land use patterns, population densities, information about water and agricultural management, and fishing intensities. The ISIMIP3a impact model simulations driven by these observation-based climate-related and direct human forcings are designed to test to what degree the impact models can explain observed changes in natural and human systems. In a second set of ISIMIP3a experiments the participating impact models are forced by the same DHFs but a counterfactual set of atmospheric forcings and coastal water levels where observed trends have been removed. These experiments are designed to allow for the attribution of observed changes in natural, human, and managed systems to climate change, rising CH4 and CO2 concentrations, and sea level rise according to the definition of the Working Group II contribution to the IPCC AR6.</p

    Zilucoplan in immune-mediated necrotising myopathy: a phase 2, randomised, double-blind, placebo-controlled, multicentre trial

    Get PDF
    BACKGROUND: Immune-mediated necrotising myopathy is an autoimmune myopathy characterised by proximal muscle weakness, high creatine kinase concentrations, and autoantibodies recognising 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) or the signal recognition particle (SRP). No approved therapies exist for people with immune-mediated necrotising myopathy. Previous studies have suggested that complement activation might be pathogenic in immune-mediated necrotising myopathy; therefore, zilucoplan, a complement C5 (C5) inhibitor, could be a potential therapy. We aimed to evaluate the efficacy, safety, and tolerability of zilucoplan in adult participants with anti-HMGCR or anti-SRP autoantibody-positive immune-mediated necrotising myopathy. METHODS: IMNM-01 was a phase 2, multicentre, randomised, double-blind, placebo-controlled study done at 15 hospital sites across the USA, the UK, France, and the Netherlands. Participants aged 18–74 years were eligible for inclusion if they had a clinically confirmed diagnosis of immune-mediated necrotising myopathy, positive serology for anti-HMGCR or anti-SRP autoantibodies, clinical evidence of weakness, serum total creatine kinase concentration of more than 1000 U/L at screening, and no change in glucocorticoids or other immunosuppressive therapies for 30 days before baseline or expected during the first 8 weeks of the study. Participants were randomly assigned (1:1) to receive daily subcutaneous zilucoplan (0·3 mg/kg) or placebo for 8 weeks by use of a computerised randomisation algorithm; with optional enrolment in the study open-label extension. Randomisation was stratified by autoantibody status. Participants and study staff were masked to treatment group assignment. Primary efficacy endpoint (in the intent-to-treat population, defined as all participants who were randomly assigned to a treatment group) was percent change from baseline to week 8 in creatine kinase concentrations. Safety analyses were performed on the safety population (participants who received at least one dose of study drug during the main study, irrespective of whether they continued to the extension period—study participants were analysed on the basis of the treatment received). This study is registered with ClinicalTrials.gov, NCT04025632. FINDINGS: Between Nov 7, 2019, and Jan 7, 2021, we randomly assigned 27 participants (13 female and 14 male) to receive zilucoplan (n=12) or placebo (n=15). All 27 participants completed the 8-week main study. At week 8 there were no significant differences between treatment groups in median percent change of creatine kinase concentrations versus baseline (–15·1% [IQR –31·1 to 3·2] in the zilucoplan group vs –16·3% [–43·8 to 5·9] in the placebo group; p=0·46) and no clinically relevant improvement over time within the treatment group despite target engagement based on mode of action. There were no unexpected adverse safety or tolerability findings. Treatment-emergent adverse events were reported in nine (75%) of 12 participants in the zilucoplan group, and in 13 (87%) of 15 participants in the placebo group, and serious treatment-emergent adverse events were reported in zero participants in the zilucoplan group and three (20%) participants in the placebo group. The most frequent treatment-emergent adverse events were headache (four [33%] participants in the zilucoplan group and four [27%] participants in the placebo group) and nausea (three [25%] participants in the zilucoplan group and three [20%] participants in the placebo group). INTERPRETATION: C5 inhibition does not appear to be an efficacious treatment modality for people with immune-mediated necrotising myopathy. Rather than being the primary driver for disease activity, complement activation might be secondary to muscle injury. FUNDING: Ra Pharmaceuticals (now part of UCB Pharma)

    A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    Get PDF
    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme). A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria interacting with an animal host

    Global heat uptake by inland waters

    No full text
    corecore