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Lakes are jeopardized by the impacts of climate change on ice seasonality and26

water temperatures1,2. Yet, historical simulations have not been used to formally27

attribute observed changes in lake ice and temperature to anthropogenic drivers.28

Additionally, future projections of these properties are mostly limited to individ-29

ual lakes or global simulations from single lake models3,4. Here we uncover the30

human imprint on lakes worldwide using novel hindcasts5 and projections from31
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five lake models. Reconstructed trends in lake temperature and ice cover in recent32

decades are extremely unlikely to be explained by pre-industrial climate variabil-33

ity alone and ice cover trends are consistent with lake model simulations under34

historical conditions, providing the first formal attribution of lake changes to an-35

thropogenic climate change. Moreover, lake temperature, ice thickness, and ice36

cover scale robustly with air temperature across future climate scenarios. Impor-37

tantly, the uncertainty in end-of-century impacts is dominated by the choice of38

emissions scenario rather than lake model or forcing types, showing that lake sys-39

tems will greatly benefit from climate mitigation. Otherwise, these impacts would40

profoundly alter the functioning of worldwide lake ecosystems and the services41

they provide.42

43

Lakes provide ecosystem services to local communities6,7 and modulate local climates8–12. The44

seasonality of lake ice cover and lake temperatures are the foundations of the lake environment,45

controlling many lake processes13,14. In recent decades, lake temperatures have been rising and46

seasonal ice cover has been declining on regional15–17 and global scales1–3. Among other things,47

these changes alter lake stratification, impact lake ecosystem productivity18 and disturb fish-48

eries19,20.49

50

New historical reconstructions of lake ice cover and mixed-layer temperature from the ERA5-51

Land reanalysis5 provide a high-resolution outlook on these changes in recent decades (Fig. 1a-52

c, Supplementary Fig. 1). From 1981-1990 until 2010-2019, these reconstructions reveal rapid53

changes; 130,472 lake grid cells worldwide have experienced two weeks of lake ice cover loss,54

while on average lakes have lost 9 days of ice cover. Likewise, global-scale reconstructed lake55

mixed layer temperature shows substantial increases, with 64,382 lake grid cells warming more56

than 1.5 ◦C and a global annual average increase of 0.4 ◦C (Fig. 2e).57

58

While observed and reconstructed changes in lake ice cover and lake temperatures are large,59

the possibility that they are due to natural climate variability has so far not been ruled out.60

They have also not been attributed to anthropogenic drivers using formal statistical approaches.61

Formally, “detection”21,22 of climate change impacts consists of showing that observed changes62

are inconsistent with natural variability by comparing them against simulated variability under63

human-free climate conditions. Upon successful detection, anthropogenic greenhouse gas emis-64

sions are a plausible candidate to explain ongoing changes in lakes, but this causal link must65

again be formally established. Such “Attribution”21,22 to anthropogenic emissions is achieved66

by showing consistencies between observed changes and response patterns derived from histor-67

ical climate impact simulations. Together, detection and attribution represent a cornerstone of68

assessments by the Intergovernmental Panel on Climate Change (IPCC)23,24.69

Climate change detection and attribution We investigate climate change detection and70

attribution in ERA5-Land reconstructed lake variables using two complementary approaches71
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and novel simulations with five global-scale lake models forced by four global climate mod-72

els (GCMs)25 (see Methods and Supplementary Note 1). The first approach26–28 considers a73

distribution of rank correlations between the multi-model mean of lake simulations forced by74

GCMs under historical climate forcings (HIST) and a collection of individual pre-industrial75

control (PIC) lake simulations. This distribution of correlations, assumed to arise from pre-76

industrial climate variability, is compared to the single correlation between HIST and the re-77

constructed time series (OBS for “observations”). Here, detection is inferred by rejecting the78

null-hypothesis that reconstructed trends are consistent with the distribution of correlations79

representative of pre-industrial climate variability (correlation-based approach29; Fig. 2a-d).80

The second approach employs Regularised Optimal Fingerprinting21,30. Here, the slope param-81

eters (henceforth referred to as scaling factors) that scale HIST to fit OBS in a total least-squares82

regression communicate detection when they are significantly different from 0 (that is, when83

the 95% confidence intervals of the scaling factors exclude 0). Attribution is achieved when84

scaling factors additionally overlap with unity.85

86

Strict attribution to anthropogenic emissions requires both all-forcings historical and natural87

historical response patterns (including for instance solar and volcanic influences but without88

anthropogenic emissions). Our experimental framework includes a pre-industrial control instead89

of a natural historical climate scenario and therefore limits formal attribution to all combined90

historical forcings (see Methods). However, in light of the dominant role of anthropogenic emis-91

sions relative to natural forcings in historical climate change31, we argue that any attribution92

in this framework entails the imprint of human influence.93

94

For lake water temperature at 2 m depth (hereafter lake temperature), the correlation-based95

approach shows a strong distinction between the correlation of OBS and HIST and the distri-96

bution of correlation coefficients of HIST and PIC (Fig. 2a). This implies that lake temperature97

reconstructions for the recent past lie outside the typical variability of pre-industrial climate98

and therefore cannot be explained by pre-industrial climate variability (>99% confidence level).99

For ice onset, break-up, and duration, correlations between OBS and HIST anomalies are again100

substantially larger than HIST versus PIC correlations (Fig. 2b-d) and also significant (at a101

confidence level of 95%, 95%, and 99%, respectively). Overall this supports the detection of a102

climate change signal in lake temperature and all three lake ice indices.103

104

Scaling factor confidence intervals for lake temperature and all three ice indices are significantly105

different from 0, confirming the detection of a climate change imprint in all four variables106

(Fig. 2e-h). For ice onset, break-up and duration, the HIST time series closely resembles OBS,107

and scaling factors overlap with unity (Fig. 2g-h), providing strong evidence to attribute changes108

in these variables to external forcings. On the whole, this formal statistical evidence confirms109

that external forcings - and by extension, anthropogenic emissions - can explain reconstructed110

changes in lake ice onset, break-up and duration.111
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Future climate projections Only a few recent studies1,3,4 project end-of-century changes in112

lake temperature and ice cover over large areas under multiple GCM forcings and representative113

concentration pathways (RCPs), thereby accounting for uncertainties related to meteorological114

forcing and climate scenario. However, these studies so far disregard both lake model uncer-115

tainty and transient lake response to greenhouse gas forcing. Having demonstrated the foregone116

imprint of climate change on lakes, we project lake temperature and ice conditions across pre-117

industrial to future periods (1661-2099) under RCPs 2.6, 6.0 and 8.5 (see Methods).118

119

By the end of the century, annual mean lake temperatures increase and ice cover decreases120

unanimously under the high-emission scenario RCP 8.5 (Fig. 3a-e). Lakes warm the most (+4-121

5 ◦C by 2070-2099 relative to 1971-2000) in southern temperate latitudes in North America and122

in temperate latitudes across Eurasia (Fig. 3a, Supplementary Fig. 2-7). In many boreal zones,123

the June-July-August lake temperature warming exceeds global mean surface air temperature124

warming by a factor of 1.5-2 (Fig. 3b), indicating a high climate sensitivity for these lakes associ-125

ated with the polar amplification of atmospheric warming. These spatial sensitivity patterns are126

consistent across RCPs for lake temperature (Supplementary Fig. 8-10), ice thickness (Supple-127

mentary Fig. 11-13) and ice cover indices (Supplementary Fig. 14-16). Ice duration decreases by128

28-80 days (5th to 95th percentile), with the largest reductions occurring in coastal regions and129

Scandinavia (> 45 days, Fig. 3e). Ice duration projections are mostly driven by changes in the130

timing of ice break-up, which happens consistently earlier in the year by the end of the century131

and agrees with the seasonality of ice thickness losses (Fig. 3c-e, See Supplementary Fig. 17-22).132

133

In all future scenarios, global mean lake temperatures increase while ice thickness and ice du-134

ration decrease (Fig. 4). Multi-model mean projections under RCPs 2.6, 6.0 and 8.5 diverge135

by 2050 at the latest, with only RCP 2.6 showing an end-of-century stabilization (Fig. 4a-136

c). Global mean projections show high inter-model consistency for all variables, except for ice137

thickness computed by Community Land Model version 4.5 (See Supplementary Fig. 23-25). By138

2100, the scenario spread exceeds the uncertainty originating from the lake models, GCMs and139

natural variability, underscoring the value of mitigation for avoiding severe lake system changes.140

141

Across all future climate scenarios, multi-model mean lake temperature, ice thickness and ice142

cover scale robustly with air temperature at the global mean level. Projected average global143

annual mean scaling for lake temperature, ice duration and ice thickness are +0.9 ◦C/◦Cair, -9.7144

days/◦Cair and -0.033 m/◦Cair, respectively. RCP 8.5 projections indicate end-of-century global145

mean anomalies of +4.0 ◦C for lake temperature, -0.17 m for ice thickness and a 46 decrease in146

days for ice duration.147

Discussion Our projections reveal coastal-inland gradients in ice duration projections around148

northern European and Scandinavian coasts and far eastern and western North America that149

agree with previous studies32. Large decreases in ice thickness projected in spring months rel-150

ative to fall months (Supplementary Fig. 17-19) agree with observed changes in lake ice cover151
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around the northern hemisphere16,33,34. This is also consistent with the dominant contribution152

of earlier ice break-up dates to ice duration changes relative to delayed ice onset (Supplemen-153

tary Fig. 14-16,20-22), which has been ascribed to a stronger climate change impact on the154

spring return of the 0◦C isotherm than its fall timing35. At the global mean level, our lake155

temperature and ice cover projections for 2100 (Supplementary Fig. 23,25) agree with RCP 2.6156

and 6.0 projections from a single lake model study over a smaller set of lakes3.157

158

Challenges to global scale lake modelling arise from parameter value selection, the spatiotem-159

poral coverage and quality of reference products and the selection of adequate impact variables.160

While anchored to reality through the step-wise bias-correction of their boundary conditions5161

(see Methods), the lake variables of ERA5-Land are diagnostics and not subject to direct as-162

similation with remote sensing or in-situ data. Furthermore, ERA5-Land provides only mixed163

layer temperature, which we assume to correspond to 2 m depth to enable comparison with the164

lake models. While a discrepancy between the global average mixed layer depth of the recon-165

structions and the lake model 2 m depth could invalidate this assumption, it also provides a166

candidate physical explanation for the positive lake temperature biases precluding attribution167

of this variable (Supplementary Fig. 26, Fig. 4). Despite these limitations, ERA5-Land is the168

only available reference product with sufficient spatial and temporal extent to be suitable for169

detection and attribution purposes. Moreover, a comparison of lake surface temperatures for 272170

lakes across the globe shows strong agreement between the reconstruction and in situ/remote171

sensing data (Supplementary Fig. 29), corroborating earlier evaluation efforts and confirming172

that ERA5-Land can be used as a reference in our study (Supplementary Note 1). Further-173

more, the lake model skill (Supplementary Fig. 27,28, Supplementary Note 2) and inter-model174

agreement both at the global scale (Supplementary Fig. 23-25) and with respect to latitudinal,175

coastal and seasonal characteristics (Supplementary Fig. 2-22) adds confidence to the quality of176

our projections. Future attribution studies may, however, benefit from the ongoing development177

of global-scale, multi-decade lake temperature and ice cover data sets based on remote sens-178

ing36. As reference data sets and lake models update in the near future, optimal fingerprinting179

techniques may provide even more robust arguments for detection and attribution.180

181

In summary, we showed increases in lake temperature and decreases in ice cover with strong182

inter-model consistency using an ensemble of five global-scale lake models. We demonstrate183

that reconstructed historical changes in lakes worldwide are extremely unlikely to have oc-184

curred due to pre-industrial climate variability alone and attribute their changes in ice cover185

indices to anthropogenic emissions. Our ensemble framework encompasses climate model, lake186

model, natural variability and scenario uncertainties, which bolsters our projections and reduces187

sampling uncertainties in detecting and attributing the anthropogenic signal in historical lake188

variable changes. These projected changes could have manifold consequences for lake thermal189

regimes, lake ecological processes and provision of lake ecosystem services. The clear depen-190

dency of our projections on the radiative forcing scenario and the strong arguments we make for191
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reconstructed changes being both unexplainable by pre-industrial climate variability alone and192

consistent with anthropogenic forcings underline the benefit of stabilizing lake systems through193

major societal adjustments towards mitigating climate change.194
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Methods195

ISIMIP We perform global-scale simulations with five lake models as a part of phase 2b of196

the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). All simulations adhere197

to the lake sector protocol (https://www.isimip.org/protocol/#isimip2b), which deter-198

mines simulated periods and scenarios, lake model forcing datasets, the spatial and temporal199

resolutions of model outputs and lake locations and depths. Pre-industrial control simulations200

(1661-2099) assume a pre-industrial climate without anthropogenic greenhouse gas forcing25.201

Historical simulations (1861-2005) use a historical climate, whereas future projections (2006-202

2099) consider RCPs 2.6, 6.0 and 8.5. Four GCMs contributing to phase 5 of the Coupled203

Model Intercomparison Project (CMIP5) - GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR204

and MIROC5 - are used as input to the lake models after bias-adjustment to the EWEMBI205

reference dataset25,37.206

207

The lake models contributing to this study are the Community Land Model version 4.5 (CLM4.5)38,208

the Arctic Lake Biogeochemistry Model (ALBM)39, SIMSTRAT-UoG40, VIC-lake41 and LAKE42.209

All lake models operate globally at 0.5◦ × 0.5◦ horizontal resolution. Since most real lakes are210

sub-grid features at this spatial resolution, simulated lake pixels are termed representative211

lakes in their location. Depth and summed grid-scale area fraction represent those of real lakes212

contained within the ISIMIP grid cells. Locations and grid-scale fractions of real lakes are de-213

termined by the Global Lakes and Wetlands Database (GLWD)43. All models but CLM4.5 use214

a 0.5◦ × 0.5◦ lake depth field aggregated from the original 30 arc sec Global Lake Data Base215

(GLDB)44–46. CLM4.5 lakes are computed with 51-meter depths in each lake containing grid216

cell. Model characteristics are provided in Supplementary Table 1.217

ERA5-Land We use ERA5-Land reanalysis lake ice depth and mixed layer temperature218

reconstructions as reference for lake model evaluation and climate change detection and attri-219

bution5. The ERA5-Land product delivers lake variables at 0.1◦ horizontal and hourly temporal220

resolution computed by the Fresh-water Lake model (FLake). ERA5-Land is a land-only re-run221

of ERA5 with a finer resolution for improved application as reference product for land-based222

energy and water flux studies. The ERA5-Land reanalysis uses lower atmospheric forcing from223

the ERA5 reanalysis as boundary conditions and is therefore bounded by observations through224

their assimilation in ERA5. Lake model computations are embedded as a tile in the Tiled225

ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology (HT-226

ESSEL)47. Here, lake variables are computed in each grid cell where inland water bodies cover227

at least 1% of the surface area of the cell. At the time of analysis, this dataset spans 1981 to228

2019 (inclusive).229

Data processing Post-processing of model ice thickness outputs was performed to attain230

homogenized ice onset, break-up and duration values. Ice cover indices were calculated with231

hydrological years, defined as year-long periods which contain ice onset or break-up dates for232
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lakes in the northern hemisphere. For ice onset calculations, we select the October to September233

hydrological year and convert each pixel value with ice cover to the day of the year of its time234

step. After this, we added 365 to periods between 1st January and 30th September so that the235

days of the year monotonically increase during one hydrological year. A temporal minimum was236

calculated across this adjusted October 1st (year t), to September 30th, (year t+1 series). This237

was performed for all available October to September hydrological years in the series, resulting238

in annual maps of ice start dates. The same process with a temporal maximum calculation across239

its September to August hydrological year was done for ice break-up calculations, resulting in240

maps of annual ice end dates. Ice duration is computed as the sum of all “ice-on” days across241

the October to September hydrological year. We analyze lake temperature at 2 m depth to242

enable comparison against ERA5-Land mixed layer temperatures and to avoid an overly strong243

dependence on surface air temperature which can be expected from lake surface temperatures244

analyses. Global mean calculations on ice thickness datasets include all pixels without ice cover.245

Reanalysis data are coarsened to the 0.5◦ × 0.5◦ ISIMIP grid. Before calculating spatial means,246

all data sets are masked for overlapping pixels between lake model simulations and reanalysis247

data.248

Detection and Attribution We generate all-forcings response patterns (HIST) by concate-249

nating each ISIMIP lake model’s historical time series (1861-2005) with the RCP 8.5 (2006-2099)250

future simulations to sample forced response patterns for the same period as the ERA5-Land251

reconstructions (1981-2019; OBS). Next, global annual means are computed from these series,252

yielding a total of 40 HIST realizations (8 per lake model). For a forced response pattern253

without human influence (PIC), all available ISIMIP pre-industrial control simulations are con-254

catenated for each lake model and cut into non-overlapping global mean “chunks” matching255

the time span of the reconstructions. This ideally provides 44 (11 × 4) chunks of pre-industrial256

climate variability driven simulations per lake model if pre-industrial control simulations span257

1661-2099 for each GCM forcing. While some lake models have only computed pre-industrial258

simulations Reconstructions and response patterns are then computed as anomalies through259

temporal centering (each series is subtracted by its temporal mean) and applied to two detec-260

tion and attribution approaches; a correlation-based view on detection and Regularised Optimal261

Fingerprinting (ROF) to confirm detection and attribution.262

263

The correlation approach (Figure 2a-d), uses all available HIST and PIC anomalies with-264

out smoothing. For each lake variable, Spearman (rank) correlation coefficients are calcu-265

lated between the global annual mean of all available historical simulations (HIST) and ev-266

ery available global annual mean PIC chunk. These correlation coefficients comprise the em-267

pirical distributions in Figure 2. A correlation coefficient is then computed between OBS268

and the mean of the HIST ensemble, plotted as a red vertical line. A normal distribution269

(Z ∼ N(mean(corr(PIC,HIST )), std(corr(PIC,HIST )))) is assumed for reporting the 95%270

and 99% confidence levels for comparison with OBS-HIST correlation. We use the Spearman271

correlation coefficient because of its resistance to outliers, however, results are consistent with272
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a Pearson correlation.273

274

We use Regularised Optimal Fingerprinting (ROF) with a Total Least-Squares (TLS) regression275

to compute scaling factors which fit annual mean HIST anomalies (here only the RCP 8.5276

versions to avoid artificial consistencies among historical, 1981-2005 sections of anomalies) to277

reconstructions (OBS) at the global mean level (Figure 2e-h). This follows a generalised linear278

regression model of the form:279

y = Xβ + ε

where y is a vector of n observations (ERA5-Land lake reconstructions; OBS), X is a matrix280

of m columns of multi-model mean simulated response patterns (ISIMIP simulations), β is a281

vector of scaling factors and ε is the regression residual, representing the internal variability in282

y. We take a single-factor approach; the regression fit is performed for one response pattern at283

a time (HIST) and therefore X only contains one column or response pattern (m = 1). In a TLS284

framework, the regression is computed to minimize residuals perpendicular to the best fit line22.285

This addresses uncertainty in X, underlining the assumption in TLS that response patterns are286

not perfectly known. TLS is, therefore, a strong choice for small ensemble study-cases with287

greater sampling uncertainty, contrasting the Ordinary Least-Squares approach wherein fitting288

by minimizing vertical residuals assumes the response patterns in X are perfectly known. The289

TLS regression is achieved through a singular value decomposition (SVD) on [y,X].290

291

Before the TLS fit, observations and response patterns are converted to 5-year block means,292

temporally centered (subtracted by their mean) and pre-whitened. Pre-whitening to achieve293

unit noise is the “optimization” of signals in ROF. This is done with a regularised covariance294

matrix, Ĉ1, which represents internal variability in our lake variables. Ĉ1 is derived from one295

of two covariance estimates, C1 and C2, computed from equal-sized samples of available PIC296

chunks. Key to ROF, regularisation involves conforming Ĉ1 to equal λC1 + ρI. Here, I is297

the identity matrix, and λ and ρ are coefficients whose estimators are provided by Ledoit and298

Wolf48. This avoids underestimating the lowest eigenvalues of Ĉ1, which translates to a conser-299

vative estimate of noise30. C2 is used for calculating the confidence intervals on scaling factors300

and performing a residual consistency test (RCT). Final computations of scaling factors, their301

confidence intervals and RCTs are taken as the median of 1000 realizations of ROF through302

shuffling the PIC chunks from which C1 and C2 are computed28.303

304

The RCT validates the residuals in the TLS regression against the assumed internal variabil-305

ity30. Here, C2 and X are used in Monte Carlo simulations to bootstrap 1000 samples of virtual306

observations, fingerprints and covariance matrices assuming a perfect fit with β = 1. The small-307

est squared singular value (or eigenvalue, λ) of the SVD in the original TLS fit - representing308

the residuals in the regression - is then corrected and used as a test statistic against 1000 vir-309

tual eigenvalues (λvirt,i=1,...1000) and their kernel density estimates (i.e λ is tested against 1000310
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virtual, empirical distributions). The RCT is passed if λ is consistent with these distributions,311

which is considered true if the average position of λ in the virtual distributions yields a p-value312

greater than 0.10 (see Supplementary Note 3).313

Future projections We calculate all maps as signals across 1971-2000 and 2070-2099 mean314

baseline and future periods. For scaling, each signal map is first divided by the change in global315

mean air temperature for the same period before calculating ensemble means. For each GCM-316

Lake model combination, we compute global mean anomalies relative to the global temporal317

average of the pre-industrial control simulation (Fig. 4). Global mean air temperature series318

from GCMs are treated the same. In panels d, e and f of figure 4, series are smoothed with a319

21-year running mean to reduce natural variability effects.320

Data Availability The ISIMIP2b lake sector simulations presented in this study are avail-321

able through the Earth System Grid Federation (ESGF, https://esgf-data.dkrz.de/). The322

ERA5-Land lake data used in this study are developed by the European Centre for Medium-323

Range Weather Forecasts (ECMWF) and are available through the Copernicus Climate Change324

Service’s Climate Data Store (CDS, https://cds.climate.copernicus.eu/cdsapp#!/search?325

type=dataset). The observed lake surface temperatures used for validating ERA5-Land can be326

found here https://portal.lternet.edu/nis/mapbrowse?packageid=knb-lter-ntl.10001.327

3.328

Code Availability All codes used to generate the analyses are available through the github329

repository of the Department of Hydrology and Hydraulic Engineering at VUB (https://330

github.com/VUB-HYDR/2020_Grant_etal).331
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Figure 1: Reconstructed historical lake ice changes. Changes in ice onset (a), ice break-up
(b) and ice duration (c) in 40 years across baseline (1981-1990) and recent (2010-2019) periods
as obtained from ERA5-Land.
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Figure 2: Detection and attribution of the human imprint on lake variables. Empirical
distribution of Spearman correlation coefficients between all available PIC chunks (realizations
of pre-industrial climate variability selected across 1661-2099) and the HIST response pattern
(the multi-model mean historical realization) for lake temperature (a), ice onset (b), ice break-
up (c) and ice duration (d). Red lines show the correlation coefficient between the HIST series
and OBS (ERA5-Land reconstructions). Vertical blue lines mark the 95% and 99% cumulative
probability of an assumed normal distribution for the sample of PIC-HIST coefficients. Global
multi-model mean time series for HIST and PIC forced response patterns and OBS smoothed by
a 5-year running mean for lake temperature (e), ice onset (f), ice break-up (g) and ice duration
(h). Results of single-factor ROF output on HIST are displayed in insets. Here, scaling factor
confidence intervals denote their 0.5-99.5% uncertainty range and infer detection when excluding
the 0 line. Attribution is achieved when confidence intervals additionally include unity.
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Figure 3: End-of-century change in lake temperature and ice onset, break-up and
duration according to RCP 8.5. a, Multi-model mean change in annual lake temperatures
for Y projections with X lake models at 2 m depth. b, the mean June-July-August lake
temperature change at 2 m depth divided by the change in same-year global mean surface
air temperature. c, d e, changes in ice onset, break-up and duration, respectively. All results
compare end-of-century (2070-2099) to present-day (1971-2000) conditions.
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Figure 4: Anomalies for lake temperature, ice thickness and ice cover. a, Multi-model
mean anomaly time series of annual lake temperatures, b, ice thickness and c, ice cover duration.
Uncertainty bands in panels a, b and c represent +/- 1 standard deviation in lake model
ensemble projections. In panels d, e and f the same lake variable anomalies are scaled against
surface air temperature anomalies, with uncertainty bands representing the full range of scaled
projections.
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