80 research outputs found

    Do You See What I Mean? Corticospinal Excitability During Observation of Culture-Specific Gestures

    Get PDF
    People all over the world use their hands to communicate expressively. Autonomous gestures, also known as emblems, are highly social in nature, and convey conventionalized meaning without accompanying speech. To study the neural bases of cross-cultural social communication, we used single pulse transcranial magnetic stimulation (TMS) to measure corticospinal excitability (CSE) during observation of culture-specific emblems. Foreign Nicaraguan and familiar American emblems as well as meaningless control gestures were performed by both a Euro-American and a Nicaraguan actor. Euro-American participants demonstrated higher CSE during observation of the American compared to the Nicaraguan actor. This motor resonance phenomenon may reflect ethnic and cultural ingroup familiarity effects. However, participants also demonstrated a nearly significant (p = 0.053) actor by emblem interaction whereby both Nicaraguan and American emblems performed by the American actor elicited similar CSE, whereas Nicaraguan emblems performed by the Nicaraguan actor yielded higher CSE than American emblems. The latter result cannot be interpreted simply as an effect of ethnic ingroup familiarity. Thus, a likely explanation of these findings is that motor resonance is modulated by interacting biological and cultural factors

    Empathy Manipulation Impacts Music-Induced Emotions: A Psychophysiological Study on Opera

    Get PDF
    This study investigated the effects of voluntarily empathizing with a musical performer (i.e., cognitive empathy) on music-induced emotions and their underlying physiological activity. N = 56 participants watched video-clips of two operatic compositions performed in concerts, with low or high empathy instructions. Heart rate and heart rate variability, skin conductance level (SCL), and respiration rate (RR) were measured during music listening, and music-induced emotions were quantified using the Geneva Emotional Music Scale immediately after music listening. Listening to the aria with sad content in a high empathy condition facilitated the emotion of nostalgia and decreased SCL, in comparison to the low empathy condition. Listening to the song with happy content in a high empathy condition also facilitated the emotion of power and increased RR, in comparison to the low empathy condition. To our knowledge, this study offers the first experimental evidence that cognitive empathy influences emotion psychophysiology during music listening

    Follow My Eyes: The Gaze of Politicians Reflexively Captures the Gaze of Ingroup Voters

    Get PDF
    Studies in human and non-human primates indicate that basic socio-cognitive operations are inherently linked to the power of gaze in capturing reflexively the attention of an observer. Although monkey studies indicate that the automatic tendency to follow the gaze of a conspecific is modulated by the leader-follower social status, evidence for such effects in humans is meager. Here, we used a gaze following paradigm where the directional gaze of right- or left-wing Italian political characters could influence the oculomotor behavior of ingroup or outgroup voters. We show that the gaze of Berlusconi, the right-wing leader currently dominating the Italian political landscape, potentiates and inhibits gaze following behavior in ingroup and outgroup voters, respectively. Importantly, the higher the perceived similarity in personality traits between voters and Berlusconi, the stronger the gaze interference effect. Thus, higher-order social variables such as political leadership and affiliation prepotently affect reflexive shifts of attention

    Contorted and ordinary body postures in the human brain

    Get PDF
    Social interaction and comprehension of non-verbal behaviour requires a representation of people’s bodies. Research into the neural underpinnings of body representation implicates several brain regions including extrastriate and fusiform body areas (EBA and FBA), superior temporal sulcus (STS), inferior frontal gyrus (IFG) and inferior parietal lobule (IPL). The different roles played by these regions in parsing familiar and unfamiliar body postures remain unclear. We examined the responses of this body observation network to static images of ordinary and contorted postures by using a repetition suppression design in functional neuroimaging. Participants were scanned whilst observing static images of a contortionist or a group of objects in either ordinary or unusual configurations, presented from different viewpoints. Greater activity emerged in EBA and FBA when participants viewed contorted compared to ordinary body postures. Repeated presentation of the same posture from different viewpoints lead to suppressed responses in the fusiform gyrus as well as three regions that are characteristically activated by observing moving bodies, namely STS, IFG and IPL. These four regions did not distinguish the image viewpoint or the plausibility of the posture. Together, these data define a broad cortical network for processing static body postures, including regions classically associated with action observation

    Group Singing as a Resource for the Development of a Healthy Public

    Get PDF
    A growing body of evidence points to a wide range of benefits arising from participation in group singing. Group singing requires participants to engage with each other in a simultaneous musical dialogue in a pluralistic and emergent context, creating a coherent cultural expression through the reflexive negotiation of (musical) meaning manifest in the collective power of the human voice. As such, group singing might be taken – both literally and figuratively – as a potent form of ‘healthy public’, creating an ‘ideal’ community which participants can subsequently mobilise as a positive resource for everyday life. The experiences of a group of singers (n=78) who had participated in an outdoor singing project were collected and analysed using a three-layer research design consisting of: distributed data generation and interpretation, considered against comparative data from other singing groups (n=88); a focus group workshop (n=11); an unstructured interview (n=2). The study confirmed an expected perception of the social bonding effect of group singing, highlighting affordances for interpersonal attunement and attachment alongside a powerful individual sense of feeling ‘uplifted’. This study presents a novel perspective on group singing, highlighting the importance of participant experience as a means of understanding music as a holistic and complex adaptive system. It validates findings about group singing from previous studies - in particular the stability of the social bonding effect as a less variant characteristic in the face of environmental and other situational influences, alongside its capacity for mental health recovery. It establishes a subjective sociocultural and musical understanding of group singing, by expanding on these findings to centralise the importance of individual experience, and the consciousness of that experience as descriptive self-awareness. The ways in which participants describe and discuss their experiences of group singing and its benefits points to a complex interdependence between a number of musical, neurobiological and psychosocial mechanisms which might be independently and objectively analysed. An emerging theory is that at least some of the potency of group singing is as a resource where people can rehearse and perform ‘healthy’ relationships, further emphasising its potential as a resource for healthy publics

    Observational Learning of New Movement Sequences Is Reflected in Fronto-Parietal Coherence

    Get PDF
    Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha) and motor (mu) rhythms operating in the 10Hz frequency range for translating “seeing” into “doing”. Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS) as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for observational learning (i.e. parts of the MNS as reflected in 10Hz coherence measures) and peripheral structures (i.e. lateral occipital gyrus for alpha; central sulcus for mu) that provide low-level support for observation and motor imagery of action sequences

    Attention modulates motor system activation during action observation: evidence for inhibitory rebound

    Get PDF
    Perceiving another individual’s actions activates the human motor system. We investigated whether this effect is stronger when the observed action is relevant to the observer’s task. The mu rhythm (oscillatory activity in the 8- to 13-Hz band over sensorimotor cortex) was measured while participants watched videos of grasping movements. In one of two conditions, the participants had to later report how many times they had seen a certain kind of grasp. In the other condition, they viewed the identical videos but had to later report how many times they had seen a certain colour change. The colour change and the grasp always occurred simultaneously. Results show mu rhythm attenuation when watching the videos relative to baseline. This attenuation was stronger when participants later reported the grasp rather than the colour, suggesting that the motor system is more strongly activated when the observed grasping actions were relevant to the observer’s task. Moreover, when the graspable object disappeared after the offset of the video, there was subsequent mu rhythm enhancement, reflecting a post-stimulus inhibitory rebound. This enhancement was again stronger when making judgments about the grasp than the colour, suggesting that the stronger activation is followed by a stronger inhibitory rebound

    Classification of Types of Stuttering Symptoms Based on Brain Activity

    Get PDF
    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type
    corecore