25 research outputs found

    Whole-brain in-vivo measurements of the Axonal G-Ratio in a group of 37 healthy volunteers

    Get PDF
    The g-ratio, quantifying the ratio between the inner and outer diameters of a fiber, is an important microstructural characteristic of fiber pathways and is functionally related to conduction velocity. We introduce a novel method for estimating the MR g-ratio non-invasively across the whole brain using high-fidelity magnetization transfer (MT) imaging and single-shell diffusion MRI. These methods enabled us to map the MR g-ratio in vivo across the brain's prominent fiber pathways in a group of 37 healthy volunteers and to estimate the inter-subject variability. Effective correction of susceptibility-related distortion artifacts was essential before combining the MT and diffusion data, in order to reduce partial volume and edge artifacts. The MR g-ratio is in good qualitative agreement with histological findings despite the different resolution and spatial coverage of MRI and histology. The MR g-ratio holds promise as an important non-invasive biomarker due to its microstructural and functional relevance in neurodegeneration

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    Studying neuroanatomy using MRI

    Full text link

    Parameter estimation for WMTI-Watson model of white matter using encoder-decoder recurrent neural network.

    No full text
    Biophysical modeling of the diffusion MRI (dMRI) signal provides estimates of specific microstructural tissue properties. Although non-linear least squares (NLLS) is the most widespread fitting method, it suffers from local minima and high computational cost. Deep learning approaches are steadily replacing NLLS, but come with the limitation that the model needs to be retrained for each acquisition protocol and noise level. In this study, a novel fitting approach was proposed based on the encoder-decoder recurrent neural network (RNN) to accelerate model estimation with good generalization to various datasets. The white matter tract integrity (WMTI)-Watson model as an implementation of the Standard Model of diffusion in white matter derives its parameters indirectly from the diffusion and kurtosis tensors (DKI). The RNN-based solver, which estimates the WMTI-Watson model from DKI, is therefore more readily translatable to various data, irrespective of acquisition protocols as long as the DKI was pre-computed from the signal. An embedding approach was also used to render the model insensitive to potential differences in distributions between training data and experimental data. The analytical solution, NLLS, RNN-, and a multilayer perceptron (MLP)-based methods were evaluated on synthetic and in vivo datasets of rat and human brain. The proposed RNN solver showed highly reduced computation time over the analytical solution and NLLS, with similar accuracy but improved robustness, and superior generalizability over MLP. The RNN estimator can be easily applied to various datasets without retraining, which shows great potential for a widespread use

    Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice.

    No full text
    Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice

    Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice

    No full text
    Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone–phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.ISSN:1546-1696ISSN:1087-015

    Length of intact plasma membrane determines the diffusion properties of cellular water

    Get PDF
    Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a highresolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = ?0.21 × CPL + 1.10). We used this finding to furtherexplain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death

    Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury.

    No full text
    Spinal cord injury (SCI) induces haemodynamic instability that threatens survival <sup>1-3</sup> , impairs neurological recovery <sup>4,5</sup> , increases the risk of cardiovascular disease <sup>6,7</sup> , and reduces quality of life <sup>8,9</sup> . Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord <sup>10</sup> , which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury <sup>11</sup> , and restored walking after paralysis <sup>12</sup> . Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI
    corecore