777 research outputs found

    High-resolution study of a star-forming cluster in the Cep-A HW2 region

    Full text link
    Due to its relatively small distance (725 pc), the Cepheus A East star-forming region is an ideal laboratory to study massive star formation processes. Based on its morphology, it has been suggested that the flattened molecular gas distribution around the YSO HW2 may be a 350-AU-radius massive protostellar disk. Goal of our work is to ascertain the nature of this structure. We have employed the Plateau de Bure Interferometer to acquire (sub-)arcsecond-resolution imaging of high-density and shock tracers, such as methyl cyanide (CH3CN) and silicon monoxide (SiO), towards the HW2 position. On the 1-arcsecond (about 725 AU) scale, the flattened distribution of molecular gas around HW2 appears to be due to the projected superposition, on the plane of the sky, of at least three protostellar objects, of which at least one is powering a molecular outflow at a small angle with respect to the line of sight. The presence of a protostellar disk around HW2 is not ruled out, but such structure is likely to be detected on a smaller spatial scale, or using different molecular tracers.Comment: 6 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    1.3 mm Polarized emission in the circumstellar disk of a massive protostar

    Get PDF
    We present the first resolved observations of the 1.3 mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting a uniform morphology of polarization vectors with an average position angle of 57° ± 6° and an average polarization fraction of 2.0% ± 0.4%. The distribution of the polarization vectors can be attributed to (1) the direct emission of magnetically aligned grains of dust by a uniform magnetic field, or (2) the pattern produced by the scattering of an inclined disk. We show that both models can explain the observations, and perhaps a combination of the two mechanisms produces the polarized emission. A third model including a toroidal magnetic field does not match the observations. Assuming scattering is the polarization mechanism, these observations suggest that during the first few 104 years of high-mass star formation, grain sizes can grow from1 mm to several 10s μm.Fil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Stephens, I. W.. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Boston University; Estados Unidos. University of Illinois; Estados UnidosFil: Girart, J. M.. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Institut de Ciències de l’Espai; EspañaFil: Looney, L.. University of Illinois; Estados UnidosFil: Curiel, S.. Universidad Nacional Autónoma de México; MéxicoFil: Segura Cox, D.. University of Illinois; Estados UnidosFil: Eswaraiah, C.. National Tsing Hua University; República de ChinaFil: Lai, S. P.. National Tsing Hua University; República de Chin

    The metaphysics of Machian frame-dragging

    Get PDF
    The paper investigates the kind of dependence relation that best portrays Machian frame-dragging in general relativity. The question is tricky because frame-dragging relates local inertial frames to distant distributions of matter in a time-independent way, thus establishing some sort of non-local link between the two. For this reason, a plain causal interpretation of frame-dragging faces huge challenges. The paper will shed light on the issue by using a generalized structural equation model analysis in terms of manipulationist counterfactuals recently applied in the context of metaphysical enquiry by Schaffer (2016) and Wilson (2017). The verdict of the analysis will be that frame-dragging is best understood in terms of a novel type of dependence relation that is half-way between causation and grounding

    Allocation in Practice

    Full text link
    How do we allocate scarcere sources? How do we fairly allocate costs? These are two pressing challenges facing society today. I discuss two recent projects at NICTA concerning resource and cost allocation. In the first, we have been working with FoodBank Local, a social startup working in collaboration with food bank charities around the world to optimise the logistics of collecting and distributing donated food. Before we can distribute this food, we must decide how to allocate it to different charities and food kitchens. This gives rise to a fair division problem with several new dimensions, rarely considered in the literature. In the second, we have been looking at cost allocation within the distribution network of a large multinational company. This also has several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on Artificial Intelligence (KI 2014), Springer LNC

    Spatial variability of soil respiration (R<inf>s</inf>) and its controls are subjected to strong seasonality in an even-aged European beech (Fagus sylvatica L.) stand

    Get PDF
    Uncertainties arising from the so-far poorly explained spatial variability of soil respiration (Rs) remain large. This is partly due to the limited understanding about how spatially variable Rs actually is, but also on how environmental controls determine Rs's spatial variability and how these controls vary in time (e.g., seasonally). Our study was designed to look more deeply into the complexity of Rs's spatial variability in a European beech even-aged stand, covering both phenologically and climatically contrasting periods (spring, summer, autumn and winter). Although we studied a relatively homogeneous stand, we found a large spatial variability of Rs (coefficients of variation &gt; 30%) characterized by strong seasonality. This large spatial variability of Rs suggests that even in relatively homogeneous stands there is a large potential source of error when estimating Rs. This was also reflected by the sampling effort needed to obtain seasonally robust estimates of Rs, which may actually require a number of samples above that used in Rs studies. We further postulate that the effect of seasonality on the spatial variability and environmental controls of Rs was determined by the seasonal shifts of its microclimatic controls: during winter, low temperatures constrain plant and soil metabolic activities and hence reduce Rs variability (temperature-controlled processes), whereas during summer, water demand by vegetation and changes in water availability due to the microtopography of the terrain (i.e., slope) increase Rs variability (water-controlled processes). This study provides novel information on the spatiotemporal variability of Rs and looks more deeply into the seasonality of its environmental controls and the architecture of their causal-effect relationships controlling Rs's spatial variability. Our study further shows that improving current estimates of Rs at local and regional levels might be necessary in order to reduce uncertainties and improve CO2 estimates at larger spatial scales. Highlights: The spatial variability of soil respiration (Rs) and its environmental controls vary seasonally. Seasonal shifts from temperature- to water-controlled processes determine Rs's spatial variability. Besides microclimate, slope and grass cover explain the spatiotemporal variability of Rs. An intense sampling effort is needed to obtain robust Rs estimates even in homogeneous forests. © 2021 British Society of Soil Science.This research was supported by the Forest GHG Management (PN‐II‐ID‐PCE‐2011‐3‐0781), TREEMORIS (PN‐II‐RU‐TE‐2014‐4‐0791), BIOCARB (PN‐III‐P1‐1.1‐TE‐2016‐1508), NATIvE (PN‐III‐P1‐1.1‐PD‐2016‐0583) and REASONING (PN‐III‐P1‐1.1‐TE‐2019‐1099) projects, all financed by the Romanian Ministry of Education and Research through UEFISCDI ( link ). This research was also supported by the IBERYCA (CGL2017‐84723‐P) project and by the BC3 María de Maeztu excellence accreditation 2018‐2022 (Ref. MDM‐2017‐0714), both financed by the Spanish Ministry of Science, Innovation and Universities. The Basque Government also supported this research through the BERC 2018‐2021 programme

    Radiocarbon dating reveals different past managements of adjacent forest soils in the Campine region, Belgium

    Get PDF
    The soils of adjacent first generation monospecific stands of Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) in the Campine region, Belgium, apparently developed under the same forming factors, were studied for carbon dynamics to disentangle eventual different past land uses. In fact, visual observations suggested that the soil under pine experienced substantial addition of organic matter and ploughing, such to be considered a plaggen, opposite to the soil under oak, which is inexplicably much poorer in C. In order to prove this hypothesis, the soil organic carbon was quantified by horizons and, both bulk soil organic matter (SOM) and the least mobile SOM fractions - the humic acid and the unextractable fractions - were radiocarbon dated. Surprising was the marked difference between the mean SOM age from the two stands. In fact, while under oak this age is a few years or decades, under pine it amounts to more than a millennium, so confirming the hypothesis of a confined C supply occurred mainly in the Middle Age, or later using partly humified matter. The mean residence time (MRT) of SOM in the organic layers matches almost perfectly with that estimated via a mass balance approach and, as expected, was much lower in the oaks than in the pines. The humic acid fraction, generally the most stable fraction of SOM, in terms of both mobility and degradability, reflects the behaviour of the bulk SOM, showing higher radiocarbon ages under pine. The findings of this work indicate that the large human-induced additions of organic material in the area now occupied by the pine stand, probably occurred in the Middle Age and it continues to strongly affect the present soil C pools and their dynamics. Any study dealing with budgets and dynamics of C in soil should avail itself of a careful reconstruction of the land uses and management history, in order to provide reliable conclusions about the real role of the current vegetation on soil carbon. Crown Copyright (c) 2008 Published by Elsevier B.V. All rights reserved

    MISALIGNED DISKS IN THE BINARY PROTOSTAR IRS 43

    Get PDF
    Recent high angular resolution (\sim0.2") ALMA observations of the 1.1 mm continuum and of HCO+ J=3-2 and HCN J=3-2 gas towards the binary protostar IRS 43 reveal multiple Keplerian disks which are significantly misaligned (>\gt 60^\circ), both in inclination and position angle and also with respect to the binary orbital plane. Each stellar component has an associated circumstellar disk while the binary is surrounded by a circumbinary disk. Together with archival VLA measurements of the stellar positions over 25 years, and assuming a circular orbit, we use our continuum measurements to determine the binary separation, a = 74 ±\pm 4 AU, and its inclination, i <\lt 30^\circ. The misalignment in this system suggests that turbulence has likely played a major role in the formation of IRS 43.Comment: 7 pages, 4 figure
    corecore