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42 Abstract

43

44 Uncertainties arising from the so far poorly explained spatial variability of soil respiration (Rs) 

45 remain large. This is partly due to the limited understanding on how actually spatially variable 

46 Rs is, but also on how environmental controls determine Rs’s spatial variability and how these 

47 controls vary in time (e.g., seasonally). Our study was designed to deepen into the complexity 

48 of Rs’s spatial variability in a European beech even-aged stand, covering both phenologicaly 

49 and climatically contrasting periods (spring, summer, autumn, winter). Although we studied a 

50 relatively homogenous stand, we found a large spatial variability of Rs (coefficients of variation 

51 > 30%) characterized by strong seasonality. This large spatial variability of Rs suggests that 

52 even in relatively homogenous stands there is a large potential source of error when estimating 

53 Rs. This was also reflected by the sampling effort needed to obtain seasonal robust estimates of 

54 Rs, which may actually require a number of samples above that used in Rs studies. We further 

55 postulate that the effect of seasonality on the spatial variability and environmental controls of 

56 Rs was determined by the seasonal shifts of its microclimatic controls: during winter, low 

57 temperatures constrain plant and soil metabolic activities and hence reduce Rs variability 

58 (temperature-controlled processes), while during summer, water demand by vegetation and 

59 changes in water availability due to the micro-topography of the terrain (i.e., slope) increase Rs 

60 variability (water-controlled processes). This study provides novel information on the spatio-

61 temporal variability of Rs and deepens into the seasonality of its environmental controls and the 

62 architecture of their causal-effect relationships controlling Rs’s spatial variability. Our study 

63 further shows that improving current estimates of Rs at local and regional levels might be 

64 necessary in order to reduce uncertainties and improve CO2 estimates at larger spatial scales.

65
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66 Highlights

67

68  The spatial variability of soil respiration (Rs) and its environmental controls vary 

69 seasonally

70  Seasonal shifts from temperature- to water-controlled processes determine Rs’s spatial 

71 variability

72  Besides microclimate, slope and grass cover explain the spatio-temporal variability of 

73 Rs

74  An intense sampling effort is needed to obtaining robust Rs estimates even in 

75 homogenous forests

76

Page 12 of 100European Journal of Soil Science



For Peer Review

6

77 1. Introduction

78

79 Soil respiration (Rs), i.e., the production and subsequent emission of carbon dioxide (CO2) from 

80 the soil to the atmosphere, is one of the key processes contributing to the global terrestrial 

81 carbon (C) balance/budget. Rs is mainly produced by biological sources from the aerobic 

82 respiration of decomposers (i.e., heterotrophic respiration), as well as by plant roots and 

83 associated microorganisms living in the rhizosphere (i.e., autotrophic respiration) (Rodeghiero 

84 & Cescatti, 2008), but also by non-biological chemical oxidation reactions of C in organic 

85 matter, although at lower rates in this latter case (Raich & Schlesinger, 1992). Globally, the Rs 

86 emissions amount to a total of almost 80 PgC y-1, being the second largest C flux after CO2 

87 uptake by plants (Raich & Tufekciogul, 2000), which means more than half of an ecosystem’s 

88 total CO2 emissions come from Rs (Barba et al., 2018; Curiel Yuste et al., 2005; Janssens et al., 

89 2001). However, Rs is also probably the least well understood part of the C budget at global 

90 terrestrial ecosystems’ level, based primarily on the fact that the large spatio-temporal 

91 variability that characterizes this large flux requires of a substantial monitoring effort at 

92 different scales and hence, of a large investment in instrumentation for its correct monitoring 

93 (Bond-Lamberty & Thomson, 2010). Therefore, and despite the large critical mass of studies 

94 performed to understand it (Bond-Lamberty & Thomson, 2010), our knowledge on the 

95 mechanisms controlling this large flux remains very limited (e.g., Barba et al., 2013; Curiel 

96 Yuste et al., 2019). Hence, there is still a need for studies designed to explore the spatio-

97 temporal variability of Rs in order to be able to calibrate models and improve predictions of soil 

98 biological CO2 emissions in a changing environment.

99

100 The magnitude of Rs-related CO2 emissions varies in time and space depending on multiple 

101 drivers. A critical mass of studies has been designed to understand how the temporal variability 
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102 of Rs relates to different environmental factors such as soil temperature (Ts; e.g., Chen et al., 

103 2014; Davidson et al., 1998; Epron et al., 2004a), soil water content (SWC; e.g., Davidson et 

104 al., 2000; Oishi et al., 2013; Poblador et al., 2017), wind (e.g., Sánchez-Cañete et al., 2016), or 

105 the photosynthetic activity of the plants (e.g., Bahn et al., 2009; Curiel Yuste et al., 2005; 

106 Davidson et al., 1998). Nevertheless, it is important to highlight the discrepancy between the 

107 large number of studies undertaken to understand the large, but predominantly explained 

108 variability in time (generally seasonal) of soil CO2 fluxes (see for instance Bond-Lamberty & 

109 Thomson, 2010) and the relatively few studies undertaken to understand the enormous, but 

110 largely unexplained spatial variability of this very same flux. Several studies have proposed 

111 different factors that define local conditions as controls of the spatial variability of Rs at the 

112 mesoscale (scale of m). Most of these studies agree on the important role of variables such as: 

113 i). the spatial variability of soil moisture (Barba et al., 2013; Kosugi et al., 2007; Poblador et 

114 al., 2017); ii). the structure of the overstorey plant community (Barba et al., 2013; Epron et al., 

115 2004b; Law et al., 2001; Saiz et al., 2006; Søe & Buchmann, 2005); iii). variables directly 

116 related to the structure of the aboveground plant community, such as leaf production (Oishi et 

117 al., 2013), root density or biomass (Knohl et al., 2008), microbial biomass, and litter thickness 

118 (Hanson et al., 1993); iv). the quantity and quality of soil organic matter (Rayment & Jarvis, 

119 2000); or v). the C/N ratio and bulk density of the top soil (Khomik et al., 2006; Ngao et al., 

120 2012; Saiz et al., 2006). Other topographical aspects, such as the slope and the position within 

121 the landscape, have been however less studied although their contribution to explain the spatial 

122 variability of Rs might also be critical (Arias-Navarro et al., 2017; Berryman et al., 2015; Brito 

123 et al., 2010; Hanson et al., 1993; Riveros-Iregui et al., 2012;). All studies, nevertheless, 

124 conclude that our capacity to predict the spatial variability of Rs and its environmental controls 

125 remains largely insufficient (e.g., Allaire et al., 2012).

126
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127 The environmental controls of the spatial variability of Rs may also vary temporally, though, to 

128 the best of our knowledge, only few studies have been designed to deepen in this potential 

129 temporal axis of the spatial variation of Rs (Epron et al., 2004b; Khomik et al., 2006; Kosugi et 

130 al., 2007; Saiz et al., 2006; Shi et al., 2016; Søe & Buchmann, 2005). The complexity of the 

131 spatial variability of Rs can vary seasonally (Riveros-Iregui et al., 2012; Shi et al., 2016; Søe & 

132 Buchmann, 2005) specially because different environmental drivers may differently influence 

133 Rs depending on the season. For instance, the influence of water availability on the spatial 

134 patterns of Rs at the landscape-scale can exhibit a bidirectional behaviour, Rs being more 

135 sensitive to water availability during dry periods or in highly drained areas than during wetter 

136 periods or in low drainage areas (Riveros-Iregui et al., 2012). Likewise, the biomass and 

137 respiration of the autotrophic (roots and rhizosphere microorganism) and heterotrophic 

138 (microbial activity) components of Rs may vary in space and time depending on the 

139 phenological state of the vegetation and its nutrient and water demands (Barba et al., 2013; Søe 

140 & Buchmann, 2005). For this reason, understanding the drivers controlling the spatial 

141 variability of Rs at different temporal scales may help us to improve and modulate the sampling 

142 effort needed in order to obtain confident estimates of Rs. This also means that obtaining reliable 

143 integrative measures of Rs would require different sampling efforts throughout the year. It is, 

144 therefore, important to understand this seasonally-dependent complexity if we want to improve 

145 our knowledge on the sampling effort needed to get accurate and costly efficient estimates of 

146 Rs (Barba et al., 2013; Herbst et al., 2009; Rayment & Jarvis, 2000; Rodeghiero & Cescatti, 

147 2008).

148

149 We studied the spatio-temporal variability of soil respiration (Rs) in a 4.0 ha (i.e., 200 m x 200 

150 m) European beech (Fagus sylvatica L.) even-aged stand. Specifically, we focused on 

151 understanding the potential seasonal (i.e., spring, summer, autumn, winter) variations of Rs and 
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152 its environmental controls to: (1) determine the magnitude of their spatial variability and the 

153 sampling effort needed per each season (i.e., spring, summer, autumn, winter) to obtain robust 

154 average estimates of Rs; and (2) identify the main environmental controls and the architecture 

155 of their potential causal-effect relationships controlling the spatial variability of Rs along the 

156 seasons (i.e., during phenologically and climatically contrasted periods of the year). We 

157 hypothesized that, given the generally large influence of the aboveground plant distribution in 

158 explaining the spatial variability of Rs, the spatial variability of Rs will be low in our European 

159 beech even-aged study stand where trees are homogeneously distributed (H1). However, we 

160 also hypothesized that, along with other already well-studied and known factors, other factors 

161 (i.e., more spatially variable at stand level), such as the micro-topography of the terrain (i.e., 

162 slope) or the spatial distribution of the grass cover, will also play an important, indirect control 

163 over Rs due to their influence on the spatial variability of the soil water content (SWC) (H2). 

164 Finally, we also hypothesized that the predictive power of the different environmental controls 

165 of the spatial variability of Rs will vary throughout the year depending on the environmental 

166 constrains that act on Rs within a given season (e.g., soil temperature, Ts; or soil water content, 

167 SWC) (H3).

168

169 2. Materials and Methods

170

171 2.1.  Study site and stand

172

173 The study site (i.e., forest) is located in the central-southern part of Romania, in Mihaesti (Arges 

174 county; 45°05'11.8019"N, 25°03'58.0428"E), at an altitude of 570 m a.s.l. (Figure 1). This forest 

175 is largely dominated by European beech, although other tree species may also be found: 

176 hornbeam (Carpinus betulus L.), sessile oak (Quercus petraea (Matt.) Liebl.), or sweet cherry 
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177 (Prunus avium L.). The density within the whole forest located in Mihaesti is of 504 trees ha-1, 

178 with a total volume of 502 m3 ha-1, and a basal area of 33 m2 ha-1 (Mihaesti Forest Management 

179 Plan). Within this forest, we focused on a 4.0 ha European beech study stand (200 m x 200 m) 

180 (Figure 1). The European beech trees within the study stand are mainly adult and dominant (i.e., 

181 canopy level). According to the Mihaesti Forest Management Plan, most individuals within the 

182 study stand have an estimated age of ~ 85 years, which allows us to consider this study stand 

183 as being even-aged. The area where our study stand is located is characterized by a temperate 

184 continental climate, with a mean annual precipitation of ~ 875.21 mm, and a mean air 

185 temperature of ~ 6.31°C, respectively (estimates calculated for the 1901 – 2019 period; CRU 

186 TS v.4; Harris et al., 2020). The mean annual precipitation for 2016 and 2017 (i.e., the years 

187 when our measurements were performed; see below) was of ~ 991.80 mm and ~ 959.60 mm, 

188 respectively. As for the mean annual air temperature, it was of ~ 7.59 °C in 2016 and of 7.54 

189 °C in 2017 (CRU TS v.4; Harris et al., 2020). The soils are Eutric Cambisols (clay loam) 

190 covered with mull type humus, developed on a sandstone with marls parental material (Florea 

191 & Munteanu, 2012). The slope within the study stand is smooth and there are no important 

192 differences regarding the altitude between the upper part of the study stand and the lower part 

193 of the study stand (Figure 1, small panel).  Mean pH values range from 4.8 (0-10 cm soil depth) 

194 to 5.2 (11-20 cm soil depth) (WTW pH330i; WTW GmbH, Weilheim, Germany).

195

196 2.2.  Field soil respiration (Rs) and microclimatic factors measurements

197

198 The 4.0 ha selected study stand was divided into regular 25 m x 25 m squares (Figure 1, small 

199 panel). Soil respiration (Rs) measurements were then performed at each of the four corners of 

200 each of the 25 m x 25 m squares, resulting thus on a total of 81 measurement points. Rs 

201 measurements were all performed using a Portable Infrared Gas Analyzer (IRGA) connected to 
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202 a soil respiration standard chamber (EGM-4 and SRC-1; PP Systems, Amesbury, MA, USA). 

203 The soil respiration chamber covered a soil surface area of 78 cm2 and an enclosed volume of 

204 1171 cm3. Since some studies have shown a clear correlation between insertion depth, the 

205 amount of cut roots, and the lost soil effluxes (Silvola et al., 1996; Wang et al., 2005), no collars 

206 were inserted in the soil (Arias-Navaro et al., 2017; Epron et al., 2004b; Hanson et al., 1993; 

207 Maestre & Cortina, 2003; Poblador et al., 2017). Instead, we followed a similar procedure to 

208 the one described by Epron et al., 2004b and we inserted the edge of the respiration chamber to 

209 a depth of 1 cm into the soil, including the litter layer. Nevertheless, this was done only after 

210 firstly removing the herbaceous layer in order to avoid potential confounding effects of the 

211 vegetation on Rs measurements. Furthermore, to avoid potential gas leaks due to the shallow 

212 insertion of the respiration chamber (1 cm into the soil) with respect to a relatively thick low-

213 density litter layer (average 3.3 cm; Table 1), the respiration chamber was strongly pressed 

214 against the soil (i.e., with the help of one hand) over the whole time measurements were 

215 performed. Final Rs values were estimated for 120 seconds based on the linear increase of the 

216 CO2 concentration within the soil respiration chamber (i.e., a closed dynamic system). Soil CO2 

217 efflux measurements were always performed between 9 a.m. and 5 p.m. Additionally, the CO2 

218 effluxes were never measured during rainy days. Specifically, in case of heavy rains (i.e., > 15 

219 mm), field Rs measurements were postponed 36 h to avoid the “Birch effect” (Birch, 1958).

220

221 Simultaneously to the field Rs measurements, microclimatic measurements (i.e., soil 

222 temperature and the volumetric soil water content) were also performed at the same 81 

223 measurement points. Specifically, soil temperature (Ts) was measured at 5 cm soil depth using 

224 the STP-2 Soil Temperature Probe that was attached to the IRGA (PP Systems, Amesbury, MA, 

225 USA). As for the volumetric soil water content (SWC), this variable was measured at 20 cm 

226 soil depth using the TDR 300 soil moisture meter (Spectrum Technologies, Inc., Plainfield, IL, 
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227 USA). All field measurements (i.e., Rs, Ts, and SWC) spanned over a period of one complete 

228 year and thus over the four seasons: spring (May 2016), summer (August 2016), autumn 

229 (November 2016), and winter (February 2017). Within each of the 4 seasons and at each of the 

230 81 measurement points, we performed 3 independent measurements for each of the 3 variables 

231 (i.e., Rs, Ts, and SWC) and then averaged their corresponding values. In order to systematically 

232 perform Rs, Ts, and SWC measurements at exactly the same locations within the study stand, 

233 we marked the 81 measurement points with wood sticks that were maintained in their positions 

234 over the whole study period. Due to the large number of measurement points (i.e., 81) and thus 

235 to the considerable field effort and logistics that were needed, Rs, Ts, and SWC measurements 

236 were always performed during 2 consecutive days during each season.

237

238 2.3.  Forest structural and soil variables and the micro-topography of the terrain

239

240 At each of the 81 measurement points, soil samples were also collected to determine the soil 

241 organic carbon (SOC) content. All soil samples were collected in February 2017 after all 

242 seasonal measurements (i.e., Rs, Ts, and SWC) were finished. Soil sampling was performed 

243 using a metallic cylinder (5 cm diameter, and 20 cm depth) and consisted in extracting one soil 

244 core at each of the 81 measurement points. SOC of the upper 20 cm of the soil profile was 

245 determined through the dry combustion method using a CHNS organic elemental micro-

246 analyser (TruSpec Micro CHNS elemental analyser, LECO, New York, USA).

247

248 The thickness of the litter layer (hereinafter referred to as “litter” to simplify) was used as a 

249 proxy of litter biomass, which could not be measured due to logistics. The litter, at each of the 

250 81 measurement points, was measured only once during the 2016 summer, two weeks before 

251 the Rs, Ts, and SWC measurements started. Although, we acknowledge the fact that it would 
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252 have been better to measure the litter layer over the year (i.e., seasons), this was not possible 

253 due to logistics. Instead, we assumed that the place where there was more accumulated litter 

254 (i.e., at some point) would be the same place where more litter usually falls and the opposite 

255 for the places where there was less accumulated litter. Accordingly, the litter depth would be 

256 basically stable over the year (i.e., seasons). Simultaneously to the litter measurements, the 

257 micro-topography of the terrain (hereinafter referred to as “slope" to simplify), at each of the 

258 81 measurement points, was also measured.

259

260 In order to account for the impact of the surrounding vegetation on our field measurements (i.e., 

261 within a radius of 7 m around each of the 81 measurement points), we counted all the 

262 surrounding European beech trees (Ntrees) and we measured their diameter at breast height 

263 (DBH; at standard 1.3 m above from the ground) and their distance to the 81 sampling points. 

264 The 7 m radius was established considering the average crown diameter of the European beech 

265 trees found within the 4.0 ha study stand (Mihaesti Forest Management Plan). The DBH of the 

266 trees was measured using a calliper (Haglöf, Sweden), only European beech trees with a DBH 

267 > 6 cm being finally considered for this study. The measured distances were used to calculate 

268 the mean distances (MeanD) from surrounding European beech trees to the 81 measurement 

269 points. In order to estimate the basal area (BA; m2 ha-1) of all European beech trees with a DBH 

270 > 6 cm, we calculated the sum of all their cross-sectional areas at breast height. Finally, within 

271 the same radius of 7 m around each of the 81 measurement points, we also estimated the 

272 percentage (%) of the soil surface covered by grass and the percentage (%) of the soil surface 

273 covered by all tree seedlings. These estimations were done visually and agreed between several 

274 observers for data consistency.

275

276 2.4.  Statistical analyses
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277

278 We used different statistics (i.e., mean, M; standard deviation, SD; and relative variability, RV) 

279 to estimate relative rates of spatial variability of forest structural and soil variables (i.e., BA, 

280 SOC, litter, Ntrees, DBH, MeanD, % of grass, and % of seedlings) and of the micro-topography 

281 of the terrain (i.e., slope). We used the same statistics (i.e., mean, M; standard deviation, SD; 

282 and relative variability, RV) plus the absolute amplitude (A; defined as the difference between 

283 maximum and minimum values) to estimate relative and absolute rates of spatial variability of 

284 the microclimate (i.e., Ts and SWC) and soil respiration (Rs) variables. As most studies give the 

285 coefficient of variation (CV), we also calculated this statistic (i.e., expressed as a percentage) 

286 for the Rs variable alone and used it to compare our results with those published in previous 

287 studies. For the Ts, SWC, and Rs variables, all the above mentioned statistics were calculated 

288 considering both the four seasons separately and the four seasons combined (i.e., annual). The 

289 relative variability statistic (i.e., RV) was calculated following Lewontin 1966 and Webster 

290 2001 as the standard deviation of the logarithms (i.e., log10 in our case) of measurements. 

291 Relative variability allows thus to compare variations between different groups of observations 

292 (Lewontin 1966; Webster 2001).

293

294 In order to calculate the minimum number of measurements (i.e., N) needed to obtain robust 

295 estimates of Rs for each season (i.e., spring, summer, autumn, and winter), we used the 

296 following power equation (Davidson et al., 2002):

297

298 N = [(t×s)/(range/2)]2                   equation 1

299

300 where, t is represented by the critical value of the t-distribution (two-tailed test) for a given 

301 confidence level (99, 95, and 90%, respectively) and for 80 degrees of freedom; s is the standard 
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302 deviation of all spatially independent Rs measurements per each season (i.e., spring, summer, 

303 autumn, and winter); and range is the width of the desired interval around the mean of the Rs 

304 measurements of each season (i.e., spring, summer, autumn, and winter) in which a smaller 

305 sample mean is expected to fall (i.e., error limit of 10%, 20%, and 30% of the Rs measurements 

306 mean per each season).

307

308 We run geostatistical analyses (i.e., experimental (semi-) variograms and theoretical 

309 variograms) to determine the spatial autocorrelation of: i). the Ts, SWC, and Rs variables, 

310 separately for each season (i.e., spring, summer, autumn, and winter); ii). all forest structural 

311 and soil variables (i.e., basal area, BA; soil organic carbon content, SOC; thickness of the litter 

312 layer, litter; number of trees surrounding the 81 measurement points, Ntrees; diameter at breast 

313 height, DBH; mean distance from surrounding European beech trees to the 81 measurement 

314 points, MeanD; percentages of grass and seedlings cover around the 81 measurement points); 

315 and iii). the micro-topography of the terrain (i.e., slope). Specifically, the experimental (semi-) 

316 variograms (i.e., binned) were performed using the “variog” function available from the “geoR” 

317 R package (Ribeiro et al., 2020) based on classical estimators. Further on, the theoretical 

318 variograms were performed using the “likfit” function available from the “geoR” R package 

319 (Ribeiro et al., 2020). These analyses were run considering the restricted maximum likelihood 

320 (REML) parameter estimation, different trends (i.e., the mean part of the model; constant, first 

321 order polynomial, and second order polynomial), and functions (i.e., models for the correlation 

322 function; matern, exponential, Gaussian, spherical, circular, cubic, wave, powered exponential, 

323 Cauchy, gneiting, and pure nugget). A total of 693 models were run. The selection of the best 

324 models for each of the analysed variables was based on AIC (Akaike Information Criteria). The 

325 selected models were then used to perform ordinary kriging using the “krige.conv” function 

326 available from the “geoR” R package (Ribeiro et al., 2020). The “image” function available 
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327 from the “geoR” R package (Ribeiro et al., 2020) was finally used to visualize the spatial 

328 prediction based on the fixed covariance parameters. All selected models were validated using 

329 the “xvalid” function available from the “geoR” R package (Ribeiro et al., 2020).

330

331 To evaluate the microclimatic controls of the spatio-temporal variability of Rs, we run multiple 

332 regression functions using the “nls” function available from the “MASS” R package (Venables 

333 & Ripley, 2020). These functions were designed according to literature (i.e., Vicca et al., 2014). 

334 Briefly, different models were designed to represent the independent controls of soil 

335 temperature (Ts) and soil water content (SWC) on Rs, but also taking into account potential 

336 unimodal responses of Rs to both microclimatic factors. Rs data was log transformed prior to 

337 analyses as it did not meet the normality assumption.

338

log(Rs) ~ a + b*Ts equation 2

log(Rs) ~ a+ b*SWC equation 3

log(Rs) ~ a + b*Ts + c*Ts
2 equation 4

log(Rs) ~ a + b*SWC + c*SWC2 equation 5

log(Rs) ~ a + b*Ts + c*SWC equation 6

log(Rs) ~ a + b*Ts + c*SWC+ d*Ts
 2 equation 7

log(Rs) ~ a + b*Ts + c*SWC+ d*SWC2 equation 8

339

340 Where, a, b, c, and d letters stand for coefficients of the multiple regression functions. The co-

341 variance and multicollinearity between Ts and SWC were examined prior to analyses using the 

342 Variance Inflation Factor (VIF). Since the VIF was lower than 2, both microclimatic variables 

343 could be used within the same model (Zuur et al., 2010). The selection of the best model was 

344 based on the AIC (Akaike Information Criterion). For these analyses, the Ts, SWC, and Rs 
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345 variables were combined over the four seasons (i.e., spring, summer, autumn, and winter). All 

346 these analyses were conducted based on the assumption that the residuals of the models were 

347 normally distributed (p > 0.05) and independent. As the assumption of independence may be 

348 justified when data collection has been performed based on a probability sampling design (e.g., 

349 de Gruijter et al., 2006) and our data collection has been performed based on a grid sampling 

350 design, we acknowledge the fact that the spatial auto-correlation between data at nearby 

351 measurement points might impact some of the obtained results.

352

353 To describe potential complex causal-effect relationships that might determine the spatio-

354 temporal variability patterns of Rs, we run Structural Equation Models (SEMs). SEMs analyses 

355 allowed to test for the direct and indirect effects of all our measured in the field variables (i.e., 

356 microclimatic variables, forest structural and soil variables, and the micro-topography of the 

357 terrain) on seasonal (i.e., spring, summer, autumn, and winter) Rs. SEMs analyses were carried 

358 out using the “psem” function available from the “piecewiseSEM” R package (Lefcheck, 2016). 

359 To harmonize the results of the SEMs with those obtained from the multiple regression 

360 functions analyses, Rs was logarithmically transformed prior to analyses. Separated SEMs were 

361 built for each of the four seasons (i.e., spring, summer, autumn, and winter). All SEMs were 

362 designed based on hypotheses supported on simple univariate correlations between the different 

363 microclimatic (i.e., soil temperature, Ts; soil water content, SWC), micro-topography of the 

364 terrain (i.e., slope), soil (i.e., soil organic carbon content, SOC; and litter), and forest structural 

365 (i.e., basal area, BA; number of trees, Ntrees; diameter at breast height, DBH; mean distance, 

366 MeanD; % of grass; and % of seedlings) variables (i.e., predictor variables). Furthermore, their 

367 potential complex causal-effect relationships, that might determine the spatio-temporal 

368 variability of Rs, were also considered. To test the goodness of fit of the SEMs, the Fisher’s C 

369 statistic was calculated. The Fisher’s C statistic follows a chi-squared distribution and tests if 
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370 the model fits the data (p > 0.05) or not (p < 0.05). Several SEMs were run, the selection of the 

371 best one being based on the AIC (Akaike Information Criteria) (Lefcheck, 2016).

372 All statistical analyses were carried out in R (v. 4.0.0, R Core Team, 2020). Statistical 

373 relationships were considered significant at p < 0.05.

374

375 3. Results

376

377 3.1.  The spatial variability of the forest structural and soil variables around the 81 

378 soil respiration (Rs) measurement points

379

380 We found a relatively low spatial variability (i.e., expressed here as relative variability, RV; 

381 Table 1) for forest structural variables such as DBH (RV = 0.1) and MeanD (RV = 0.1) (Table 

382 1, Figure S1). Similar results were obtained also for soil variables such as SOC (RV = 0.1) and 

383 litter (RV = 0.1) (Table 1, Figure S1). On the other hand, the spatial variability of the understory 

384 vegetation (i.e., % of grass and % of seedlings) showed the highest values and was higher 

385 relative to the spatial variability of the overstorey vegetation (i.e., BA and Ntrees) (Table 1, 

386 Figure S1). High spatial variability values were found also for the slope (RV = 0.3) (Table 1, 

387 Figure S1).

388

BA SOC Litter Slope Ntrees DBH MeanD Grass Seedlings
Statistics

(m2 ha-1) (t ha-1) (cm) (%) (N ha-1) (cm) (m) (%) (%)

M 47.3 44.3 3.3 12.2 443 32.8 3.5 57.5 9.1

SD 16.9 12.9 0.7 8.3 200 6.3 0.8 31.1 8.6

RV 0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.4 0.3

Page 25 of 100 European Journal of Soil Science



For Peer Review

19

389 Table 1. Mean (M), standard deviation (SD), and relative variability (RV; following Lewontin 

390 1966 and Webster 2001) values of forest structural, soil, and the micro-topography of the terrain 

391 variables. Where, BA, basal area of the European beech trees surrounding the 81 measurement 

392 points; SOC, soil organic carbon content; Litter, thickness of the litter layer; Slope, micro-

393 topography of the terrain within the study stand; Ntrees, the count of all the surrounding 

394 European beech trees around each of the 81 measurement points; DBH, average diameter at 

395 breast height (i.e., > 6 cm) of the European beech trees surrounding the 81 measurement points; 

396 MeanD, mean distance from the European beech trees to the 81 measurement points; Grass, 

397 percentage of the soil surface covered by grass; Seedlings, percentage of the soil surface 

398 covered by tree seedlings.

399

400 3.2.  Soil respiration (Rs) sampling effort needed per season

401

402 The calculation of the minimum number of measurements needed to obtain robust estimates of 

403 Rs for each season (i.e., spring, summer, autumn, and winter) showed how sensitive equation 1 

404 was to both the error limit (i.e., 10%, 20%, and 30%) and the confidence interval (90%, 95%, 

405 and 99%) (Table S1). Accordinly, the calculated sampling effort varied within and among 

406 seasons depending on the error limit and the confidence interval. Specifically, the sampling 

407 effort varied more strongly within seasons than among them (Table S1). As for the sampling 

408 effort needed from one season to another to obtain robust estimates of Rs, differences were not 

409 so strong especially between summer, autumn, and winter (Table S1). Spring was the season 

410 when less minimum Rs measurements seem to be needed to obtain robust estimates of Rs (Table 

411 S1) no matter the confidence level and the error limit (Table S1). On the other hand, winter was 

412 found to be the season when more sampling effort seems to be needed to obtain robust estimates 

413 of Rs no matter the confidence level and the error limit (Table S1). The sampling effort for the 
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414 summer season seems to be quite close to the winter one, while the sampling effort for the 

415 autumn season was found to be slightly lower (i.e., in between the spring and summer), no 

416 matter the confidence level and the error limit (Table S1).

417

418 3.3.  Seasonal and spatial variability of soil respiration (Rs), soil temperature (Ts), 

419 and soil water content (SWC)

420

421 As expected, both microclimatic variables (i.e., Ts and SWC) experienced very different 

422 seasonal patterns during the study period (Table 2, Figure 2). On one hand, Ts experienced large 

423 seasonal changes, peaking during summer and reaching its minimums during winter (Table 2, 

424 Figure 2a). On the other hand, values of SWC experienced less seasonality, reaching its 

425 minimums during summer, but being very stable and similar for the rest of the year (Table 2, 

426 Figure 2b). Seasonality of Rs followed a pattern similar to that observed for Ts, peaking during 

427 both spring and summer, and reaching its minimums during winter (Table 2, Figure 2c).

428

429 The spatial variability of the microclimatic variables was also markedly different (Table 2, 

430 Figure 3). Specifically, the spatial variability of Ts was generally smaller (RV values ranging 

431 from 0.01 to 0.10), within the range of 3.1 to 5.3 ºC of amplitude (Table 2, Figure 3A, D, G, J), 

432 than the spatial variability of SWC (RV values ranging from 0.10 to 0.14), within the range of 

433 31.9 to 54.6 % vol. of amplitude (Table 2, Figure 3B, E, H, K). Rs was the variable with the 

434 highest spatial variability (RV values ranging from 0.13 to 0.17), within the range of 2.5 to 11.9 

435 µmol CO2 m-2 s-1 of amplitude (Table 2, Figure 3C, F, I, L) and coefficients of variation above 

436 30% (Table 2). As concerning the standard deviation of the mean values, both Ts and SWC 

437 showed seasonal changes, summer being the season that showed the lowest values (Table 2). 

438 Standard deviation values for Rs also showed seasonal changes, being higher in spring and 
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439 summer and smaller in winter (Table 2), a pattern that followed the increase of the Rs rates 

440 (Figure 2).

441

Ts

(°C)

SWC

(% vol.)

Rs

(µmol CO2 m-2 s-1)Period

M SD RV A M SD RV A M SD RV CV A

Spring 14.4 0.9 0.03 4.6 33.0 10.2 0.14 54.6 6.3 2.0 0.13 31.1 8.7

Summer 17.4 0.6 0.01 3.1 24.9 6.6 0.12 31.9 6.4 2.4 0.17 37.6 11.9

Autumn 7.5 0.7 0.04 3.9 29.6 8.1 0.11 42.7 2.8 1.0 0.15 34.9 4.8

Winter 3.8 0.9 0.10 5.3 33.9 8.0 0.10 41.9 1.3 0.5 0.16 36.4 2.5

Annual 10.8 5.5 0.27 17.7 30.4 9.0 0.13 54.6 4.2 2.7 0.33 65.1 13.6

442 Table 2. Mean (M), standard deviation (SD), relative variability (RV; following Lewontin 1966 

443 and Webster 2001), Coefficient of Variation (CV; only for the Rs variable) expressed as a 

444 percentage, and absolute amplitude (A; defined as the difference between maximum and 

445 minimum values) values of soil microclimate (i.e., Ts, soil temperature; and SWC, soil water 

446 content) and soil respiration (Rs) measurements. The above mentioned statistics have been 

447 calculated both at the seasonal level (i.e., spring, summer, autumn, and winter) and over the 

448 four seasons combined (i.e., annual).

449

450 3.4. The spatio-temporal variability of soil respiration (Rs)

451

452 The model that best explained the microclimatic controls over the spatio-temporal variability 

453 of Rs was the model that considered unimodal responses of Rs to Ts and a negative linear 

454 response of Rs to SWC (i.e., equation 7) (Table S2, Figure 4). Specifically, the unimodal effect 

455 of Ts on Rs translated into a seasonal sensitivity of Rs to Ts: i.e., Rs response to Ts was stronger 

456 at lower Ts values (i.e., corresponding to autumn and winter seasons) than at higher Ts values 
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457 (i.e., corresponding to spring and summer seasons) (Figure 4a) when Rs reached its peak (Table 

458 2) and its response to the seasonal changes of Ts was low. The overall effect of SWC over the 

459 spatio-temporal variability of Rs was negative, this response being evidenced by the negative 

460 slope of this relationship (Figure 4b). This negative effect was further on highlighted by the 

461 overall relationship that was found between SWC and Rs at the spatial scale (i.e., results of the 

462 SEM analyses), where higher values of SWC were generally associated with low Rs rates (see 

463 Figures 4b and 5). Hence, the SWC effect on Rs was mainly driven by the spatially net negative 

464 effect of SWC on Rs.

465

466 Both multiple regression functions and SEMs agreed that the microclimatic variables (Ts and 

467 SWC; Figures 4 and 5) were, overall, the most important factors controlling the variability of 

468 Rs in our 4.0 ha study stand. Nevertheless, SEMs further showed how the architecture of the 

469 potential causal-effect relationships controlling Rs’s spatial variability increased in complexity 

470 (Figure 5) during spring and summer, when the spatial variability of Rs was maximal (see SD 

471 and A in Table 2 and Figure 2C). Specifically, SEMs highlighted how during the summer 

472 season, when the spatial variability of Rs was the highest (Table 2), the number of variables 

473 ultimately involved in controlling the spatio-temporal variability of Rs were also high compared 

474 to, e.g. winter or autumn (Figure 5). Also, the predictive capacity of the spatio-temporal 

475 variability of Rs varied seasonally (Table 3), the coefficient of determination (R2) ranging from 

476 0.10 in winter to 0.29 in autumn. SEMs showed how both the forest structural (Ntrees, MeanD, 

477 and % of grass cover) and the micro-topography of the terrain (i.e., slope) variables may 

478 strongly influence, directly and indirectly the spatio-temporal variability of Rs (Figure 5). 

479 Specifically, in spring and summer, the % of grass cover was negatively associated with Ts and 

480 SWC, which on their turn exerted a further positive and negative, respectively, influence on the 

481 spatio-temporal variability of Rs (Figure 5). Ntrees instead, always showed a direct and positive 
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482 effect on the spatio-temporal variability of Rs during the coldest seasons (i.e., autumn and 

483 winter; Figure 5). The slope (i.e., the micro-topography of the terrain within the study stand) 

484 was negatively related with MeanD in spring and summer, this relationship being especially 

485 important during summer when MeanD exerted some control (i.e., positive relationship) over 

486 Rs (Figure 5). 
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487

Season Response Predictor Estimate SE df p-value SRW Response R² n Fisher’s C df p-value

Rs Ts 0.0583 0.0154 78 0.0003 0.39 Rs 0.17 81 10.193 10 0.424

Rs Slope -0.0031 0.0017 78 0.0672 -0.19 MeanD 0.05

MeanD Slope -0.0213 0.0103 79 0.0413 -0.23 Ts 0.07
Spring

Ts Grass -0.0076 0.0031 79 0.0170 -0.26

Rs SWC -0.0086 0.0028 76 0.0030 -0.32 Rs 0.24 80 12.3 12 0.422

Rs Ts -0.0836 0.0320 76 0.0109 -0.27 SWC 0.11

Rs MeanD 0.0471 0.0227 76 0.0412 0.22 MeanD 0.05

SWC Slope -0.1890 0.0829 77 0.0253 -0.25

SWC Grass -0.0571 0.0226 77 0.0134 -0.28

Summer

MeanD Slope -0.0213 0.0103 79 0.0413 -0.23

Rs Ts 0.0504 0.0233 77 0.0331 0.22 Rs 0.29 81 1.581 2 0.454

Rs SWC -0.0076 0.0018 77 0.0001 -0.40 Ts 0.07

Rs Ntrees 0.0002 0.0001 77 0.0486 0.20
Autumn

Ts Ntrees 0.0008 0.0004 79 0.0190 0.26

Winter Rs Ntrees 0.0003 0.0001 79 0.0045 0.31 Rs 0.10 81 0 0 1
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488 Table 3. Statistics of the Structural Equation Models (SEMs) analyses showing causal-effect relationships that determine the spatio-temporal 

489 variability of soil respiration (Rs). Only significant (p < 0.05) and marginally significant (p < 0.1) causal relationships are given. Where, Ts, soil 

490 temperature; SWC, soil water content; Slope, micro-topography of the terrain within the study stand; Ntrees, the count of all surrounding European 

491 beech trees around each of the 81 measurement points; MeanD, mean distance from the European beech trees to the 81 measurement points; Grass, 

492 percentage of the soil surface covered by grass; SE, standard error; df, degrees of freedom; SRW, Standardized Regression Weights; R2, the 

493 coefficient of determination; n, sampling size; Fisher’s C statistic, follows a chi-squared distribution and tests if the model fits the data (p > 0.05) 

494 or not (p < 0.05). The right hand part of the table shows the statistics of the best models representing the spatio-temporal variability of Rs during 

495 each of the four different seasons (i.e., spring, summer, autumn, and winter).

496
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497 4. Discussion

498

499 We here report high soil respiration (Rs) coefficient of variation values (i.e., CV, ranging from 

500 31.1 in spring to 37.6 in summer; see Table 2) in an even-aged European beech study stand 

501 located in the central-southern part of Romania (Mihaesti, Arges county). These values are 

502 higher or comparable to other CV values mentioned in previous studies (e.g., Barba et al., 2013; 

503 Epron et al., 2004b; Kosugi et al., 2007; Ngao et al., 2012; Shi et al., 2016; Stoyan et al., 2000), 

504 although caution should be taken when comparing CV values among studies as they might also 

505 vary depending on the considered spatial scales (e.g., Darenova & Čater, 2020; Ngao et al., 

506 2012). Nevertheless, independent of this consideration, the high CV values we obtained here 

507 refute our first hypotheses (H1). In fact, the magnitude of the spatial variability of Rs during the 

508 warmest seasons (i.e., spring and summer) was comparable to the overall annual variability of 

509 Rs (see SD and A values in Table 2), which reinforces the idea of the large, though generally 

510 neglected, impact of Rs’s spatial variability on estimates of soil CO2 effluxes, even in 

511 homogenous ecosystems such as the European beech even-aged study stand that we considered 

512 here. The calculated large sampling effort needed to obtain robust estimates of Rs for any given 

513 season (being even larger in winter, see Table S1) further highlights the importance of the 

514 spatial variability of Rs as a potential source of uncertainty on local and global CO2 estimates 

515 and that should be taken into account. This is of upmost importance especially now, when the 

516 number of studies dedicated to scale up CO2 observations from local to global levels is growing. 

517 Accordingly, our study suggests that obtaining robust estimates of Rs at the local level may 

518 require of more intense spatial sampling efforts, than those generally carried out for logistical 

519 reasons, in order to address and diagnose uncertainties on CO2 estimates at the global level 

520 (e.g., Jian et al., 2018; Warner et al., 2019).

521
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522 The large spatio-temporal variability of Rs was strongly and directly determined by soil 

523 microclimatic conditions (Ts and SWC; Figures 4 and 5). Nevertheless, as hypothesized (H2), 

524 less considered variables such as the forest structural ones (i.e., grass, MeanD, Ntrees) or the 

525 micro-topography of the terrain (i.e., slope), proved to have a determinant, direct or indirect, 

526 effect on the observed spatio-temporal variability of Rs. In the case of the slope and the grass 

527 cover variables, they both showed further tight relationships with soil microclimatic conditions 

528 (i.e., Ts and SWC). These relationships were found to be significant in spring and summer 

529 (Figure 5), the two seasons when Rs values peaked (Table 2). Specifically, grass cover 

530 modulated the Ts variable in spring, with an indirect effect over Rs. In summer instead, when 

531 SWC usually registers low values and the competition for water and nutrients between the 

532 heterotrophic communities and the vegetation is high (Villegas et al., 2010), grass cover 

533 modulated the SWC availability, with an indirect effect over Rs. Our results highlight thus the 

534 importance of seldom considered variables, such as the micro-topography of the terrain (e.g., 

535 Arias-Navarro et al., 2017) and the vegetation (e.g., Søe & Buchmann, 2005), in Rs studies, as 

536 they may actually substantially impact, either directly or indirectly, the spatio-temporal 

537 variability of Rs. Instead, in our European beech even-aged study stand, we found no significant 

538 effects of variables generally well associated with the spatial variability of Rs, such as the litter 

539 (e.g., Epron et al., 2004b; Katayama et al., 2009; Saiz et al., 2006) or the soil organic carbon 

540 content (e.g., Søe & Buchmann, 2005). Although the fact that litter thickness was only 

541 measured once (i.e., during the 2016 summer; cf. 2.3. section), and thus may have generated a 

542 certain source of noise in our models (since the litter generally accumulates in autumn in 

543 deciduous-dominated forests), we assumed that our summer measurements contain very 

544 valuable information on the long-term spatial patterns of litter accumulation on the soil, and 

545 therefore, valuable information on where litter can have a greater impact on the spatial 

546 variability of soil processes in the long term. We are further aware of the limitations of our 
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547 study, since other variables, such as soil compaction (Schwen et al., 2015) or the spatial 

548 distribution of the root biomass (Søe & Buchmann, 2005), that have not been measured, may 

549 have also helped to explain the observed spatial patterns of Rs. However, we expect that effects 

550 of the spatial variability of soil compaction on, e.g. water infiltration or CO2 diffusivity (e.g., 

551 Schwen et al., 2015), will not be as high as in more intensively used stands since our study 

552 stand has not undergone any forestry intervention during the last 85 years and has no livestock 

553 load (according to the Mihaesti Forest Management Plan). On the other hand, and given the 

554 logistical inability to obtain estimates of the spatial distribution of root biomass, our exhaustive 

555 characterization of the distribution of trees and understorey (e.g., grass and seedlings) around 

556 the 81 measurement points emerged as a good proxy highly associated with the distribution of 

557 roots, assuming that proximity to vegetation is closely associated with root density in the soil 

558 (Søe & Buchmann, 2005).

559

560 Our results further emphasized the importance of understanding the temporal (i.e., seasonal) 

561 changes in the magnitude and controls of spatial variability of Rs. This variability could be 

562 especially important in temperate areas where microclimatic conditions (i.e., Ts and SWC), soil 

563 CO2 effluxes, and vegetation activity may vary dramatically throughout the year (e.g., Curiel 

564 Yuste et al., 2005). Indeed, and also as hypothesized (H3), our results indicated that, along with 

565 the observed seasonal variability in the magnitude of Rs, the variables that control the spatial 

566 variability of Rs were also subjected to strong seasonality. The architecture of the causal-effect 

567 relationships controlling Rs’s spatial variability varied between the four seasons and showed an 

568 increased complexity during spring and summer, while in autumn and especially in winter these 

569 relationships were much simpler (Figure 5). In line with these findings, spring and summer 

570 were also the seasons when the highest Rs values were registered, as expected for temperate 

571 ecosystems (e.g., Knohl et al., 2008; Saiz et al., 2006; Shi et al., 2016; Søe & Buchmann, 2005). 
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572 These high Rs values coincided thus with the warmest temperatures of the year, with the peak 

573 in plant and soil biological activity, and with the highest variability of Rs in absolute terms. 

574 These results are of upmost importance as they highlight the fact that in order to obtain robust 

575 estimates of Rs-CO2 derived emissions and to have a deeper understanding on the Rs variability, 

576 both spatial and temporal Rs controlling processes need to be taken into account.

577

578 Based on our results, we postulate that in this even-aged European beech study stand, the 

579 observed spatio-temporal changes and controls of the Rs respond to a seasonal shift that goes 

580 from temperature-controlled (i.e., winter and autumn) to water-controlled (i.e., spring and 

581 summer) processes. Figure 6 shows a conceptual framework, based on our results, that 

582 illustrates this shift in time. During cold periods, when the seasonal variability of Rs was, as 

583 expected in a temperature forest (e.g., Curiel Yuste et al. 2003), strongly limited by Ts (Figure 

584 4a), the spatial variability in Rs followed the low spatial variability of Ts (represented as 

585 standard deviation of the mean Rs or Ts in Figure 6), resulting in low spatial variability of Rs 

586 (Table 2, Figure 6). Most factors had insignificant effects over the spatial variability of Rs 

587 during the winter season, when only Ntrees (i.e., the number of European beech trees surrounding 

588 the 81 measurement points) showed a positive relationship with Rs (Figure 5). These results 

589 might be related with a larger autotrophic respiration contribution to Rs during winter when 

590 European beech trees are able to maintain part of their fine root biomass alive (e.g., Büttner and 

591 Leuschner, 1994; Zwetsloot et al., 2019). A similar result was found for the autumn season, 

592 when Ntrees also showed a positive relationship with Rs (Figure 5). During warm periods (i.e., 

593 summer), when the soil metabolic activity is at its peak (reflected in higher rates of Rs; Table 

594 2, Figure 2), the increase in temperature and vegetation activity increases the demand for SWC 

595 (evapotranspiration), which then becomes a limiting factor for Rs. Although our SWC 

596 measurements were too deep (i.e., 20 cm soil depth) to capture this increasing water control 
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597 (i.e., our model could not capture a positive effect of SWC on Rs; see Figure 4b), this seasonal 

598 water limitation of Rs was evidenced by the low sensitivity to temperature that Rs experienced 

599 during the warmer periods (Figure 4a), which is the shape typically observed when Rs responds 

600 to a shift that goes from temperature-controlled to water-controlled processes (e.g., Curiel-

601 Yuste et al., 2003, 2005; Davidson & Janssens, 2006). This shift towards Rs’s spatial variability 

602 being water-controlled resulted in an increase in Rs variability, which subsequently become 

603 more spatially variable than temperature (reflected in increased standard deviation values of Rs 

604 with respect to Ts; see Figure 6). The shift towards a water-limited Rs system that generated 

605 spatial variability of Rs (Figure 6) also increased the complexity of Rs controls (Figures 5 and 

606 6). This is because the increase in vegetation activity triggered a higher competition for water, 

607 as evidenced by, e.g. the strong negative influence of tree proximity (i.e., positive effect of 

608 MeanD in summer on Rs; Figure 5) or the strong negative effect of the grass cover over SWC 

609 during summer (Figure 5). Hence, the evaporative demand of the vegetation (i.e., MeanD and 

610 grass cover) exerted direct and indirect controls over the spatial variability of Rs during dry, 

611 warm, and phenologically active periods (i.e., spring and summer), contributing to an increase 

612 in the spatial variability of Rs. The slope (i.e., the micro-topography of the terrain) was another 

613 variable that contributed, directly and indirectly, to the increase in the spatial variability of Rs 

614 during warmer periods characterized by higher water demand (Figure 5). Slope may have large 

615 impacts over water availability and water balances by creating spatial variability in e.g. the 

616 incidence of solar radiation at the floor level and water run-off (Berryman et al., 2015; Riveros-

617 Iregui et al., 2012), with further consequences on soil CO2 effluxes, even across short distances 

618 (Arias-Navarro et al., 2017). It is likely that, at our study stand, the spatial distribution of the 

619 slopes captured the spatial variability of SWC during drier periods (i.e., summer) better than 

620 our own SWC measurements taken at 20 cm depth. This is because during periods of high water 

621 demand (i.e., summer), SWC decreases very fast in the uppermost layer of the soil, where most 
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622 of both autotrophic and heterotrophic activities concentrate (Curiel Yuste et al., 2003, 2005), 

623 whereas at 20 cm depth SWC remains above the volumetric content thresholds at which SWC 

624 limits Rs, as stated by the fact that no positive relationship was found between SWC and Rs 

625 (Figures 4b and 5).

626

627 5. Conclusions

628

629 We here highlight the fact that the spatial variability of Rs proves to be high even in a relatively 

630 homogenous even-aged European beech study stand of 4.0 ha. Accordingly, our estimates 

631 regarding the sampling effort needed to obtain robust estimates of Rs further suggest that most 

632 studies to date might have probably underestimated the sampling effort needed to obtain 

633 accurate spatial estimates of Rs throughout the year. Our study further shows that the spatial 

634 variability of Rs, varied significantly throughout the year, peaking in spring and summer and 

635 being low in winter, coinciding thus with the seasonal variability in the absolute magnitude of 

636 Rs. We here postulate that in this European beech-dominated even-aged study stand, the 

637 observed large seasonal changes in the magnitude and controls of the spatial variability of Rs 

638 respond to a seasonal shift that goes from temperature-controlled (i.e., winter and autumn) to 

639 water-controlled (i.e., spring and summer) processes. This is because when temperatures and 

640 water demands are high, the evaporative demand of both the overstorey but also the understorey 

641 vegetation, as well as the micro-topography of the terrain (i.e., slope), generate spatial 

642 complexity in soil Rs. During winter, temperature limits processes and prevents most other 

643 factors from spatially influencing Rs. In conclusion, obtaining robust, accurate estimates of Rs-

644 derived CO2 effluxes, may profit from: (1) a deeper understanding of how the spatial patterns 

645 of Rs varies across seasons, e.g., understanding when processes shift from being controlled by 

646 temperature (i.e., winter and autumn) to being controlled by water (i.e., spring and summer); 
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647 and (2) a deeper understanding on how, when, and where, factors such as the micro-topography 

648 of the terrain or the plant-plant and the plant-soil competition for water may contribute to this 

649 spatial variability of Rs. In line with our findings, it would be interesting to test in future at 

650 which extent this observed trends apply to other types of ecosystems or if they may also be 

651 extrapolated to latitudinal and/or altitudinal gradients, i.e., whether Rs’s spatial complexity may 

652 increase considering gradients that go from temperature-limited (e.g., temperate) to water-

653 limited (e.g., arid and semi-arid) systems, or from topographically simple (e.g., valleys) to 

654 topographically more complex (e.g., mountains) systems.

655
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929 Figure captions:

930 Figure 1. Map indicating the location of Romania within Europe and the location of the study 

931 site in the central-southern part of Romania (i.e., Mihaesti, Arges county). The small panel 

932 shows the sampling design: a 4.0 ha (i.e., 200 m x 200 m) even-aged European beech stand 

933 divided into 25 m x 25 m squares. The scale that appears on the right size of the small panel 

934 indicates the altitude (m a.s.l.) gradient within the study stand.

935 Figure 2. Seasonal (i.e., spring, summer, autumn, and winter) patterns of: a) soil temperature 

936 (Ts); b) soil water content (SWC); and c) soil respiration (Rs).

937 Figure 3. Spatial prediction based on the fixed covariance parameters generated by performing 

938 geostatistical analyses on the seasonal (i.e.., spring, summer, autumn, and winter) spatial 

939 distribution of soil temperature (Ts), soil water content (SWC), and soil respiration (Rs).

940 Figure 4. Representation of the best model (Table S2) that explained the microclimatic controls 

941 (soil temperature, Ts; and soil water content, SWC) over the spatio-temporal variability of soil 

942 respiration (Rs): a) Rs response to Ts; and b) Rs response to SWC. Black opened dots represent 

943 the row data, while red (i.e., Rs response to Ts model) and blue (i.e., Rs response to SWC model) 

944 opened dots represent the fitted by the best model data. To ease the interpretation, the results of 

945 the multiple regression functions, for which Rs was logarithmically transformed, were back-

946 transformed to the original scale.

947 Figure 5. Path diagrams showing the results of the Structural Equation Models (SEMs), 

948 represented by seasons. Arrows indicate causal relationships: positive and negative effects are 

949 indicated by solid and dashed arrows, respectively. Only the significant (p < 0.05) and 

950 marginally significant (p < 0.1) relationships were represented (see Table 3). The number given 

951 next to each arrow represents the Standardized Regression Weights (SRW) values given in 

952 Table 3. Path diagrams are represented in a plot where the X-axis represents the seasons (i.e., 

953 spring, summer, autumn, and winter) and the Y-axis represents the mean values of the soil 
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954 respiration (Rs) flux for each season. Where, Grass, percentage of the soil surface covered by 

955 grass; Ts, soil temperature; Rs, soil respiration; Slope, micro-topography of the terrain within 

956 the study stand; MeanD, mean distance from the European beech trees to the 81 measurement 

957 points; SWC, soil water content; Ntrees, the count of all the surrounding European beech trees 

958 around each of the 81 measurement points.

959 Figure 6. Conceptual framework illustrating how the observed spatio-temporal changes and 

960 environmental controls of the soil respiration (Rs) respond to a seasonal shift that goes from 

961 temperature-controlled (i.e., winter and autumn) to water-controlled (i.e., spring and summer) 

962 processes. The X-axis represents the seasonal (i.e., winter, autumn, spring, and summer) soil 

963 temperature (Ts) changes. The Y-axis represents the spatial variability of soil temperature (Ts) 

964 and Rs represented as the standard deviation (SD) of the mean. The path diagrams, obtained 

965 from the Structural Equation Models (SEMs; Figure 5), are also represented to show how the 

966 complexity of the controls of Rs increases along with the spatial variability of Rs.  In the upper 

967 part of the figure, the shift that goes from temperature-controlled (i.e., winter and autumn) to 

968 water-controlled (i.e., spring and summer) processes over the spatial variability of Rs, is 

969 indicated. The small figure panel included within the conceptual framework is represented by 

970 Figure 4a, with the red arrows indicating the seasonal temperature control of Rs (winter and 

971 autumn) and the flattening of this control during warmer periods (spring and summer). Where, 

972 Ntrees, the count of all the surrounding European beech trees around each of the 81 measurement 

973 points; SWC, soil water content; Grass, percentage of the soil surface covered by grass; Slope, 

974 micro-topography of the terrain within the study stand; MeanD, mean distance from the 

975 European beech trees to the 81 measurement points.
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42 Abstract

43

44 Uncertainties arising from the so far poorly explained spatial variability of soil respiration (Rs) 

45 remain large. This is partly due to the limited understanding on how actually spatially variable 

46 Rs is, but also on how environmental controls determine Rs’s spatial variability and how these 

47 controls vary in time (e.g., seasonally). Our study was designed to deepen into the complexity 

48 of Rs’s spatial variability in a European beech even-aged stand, covering both phenologicaly 

49 and climatically contrasting periods (spring, summer, autumn, winter). Although we studied a 

50 relatively homogenous stand, we found a large spatial variability of Rs (coefficients of variation 

51 > 30%) characterized by strong seasonality. This large spatial variability of Rs suggests that 

52 even in relatively homogenous stands there is a large potential source of error when estimating 

53 Rs. This was also reflected by the sampling effort needed to obtain seasonal robust estimates of 

54 Rs, which may actually require a number of samples above that used in Rs studies. We further 

55 postulate that the effect of seasonality on the spatial variability and environmental controls of 

56 Rs was determined by the seasonal shifts of its microclimatic controls: during winter, low 

57 temperatures constrain plant and soil metabolic activities and hence reduce Rs variability 

58 (temperature-controlled processes), while during summer, water demand by vegetation and 

59 changes in water availability due to the micro-topography of the terrain (i.e., slope) increase Rs 

60 variability (water-controlled processes). This study provides novel information on the spatio-

61 temporal variability of Rs and deepens into the seasonality of its environmental controls and the 

62 architecture of their causal-effect relationships controlling Rs’s spatial variability. Our study 

63 further shows that improving current estimates of Rs at local and regional levels might be 

64 necessary in order to reduce uncertainties and improve CO2 estimates at larger spatial scales.

65
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66 Highlights

67

68  The spatial variability of soil respiration (Rs) and its environmental controls vary 

69 seasonally

70  Seasonal shifts from temperature- to water-controlled processes determine Rs’s spatial 

71 variability

72  Besides microclimate, slope and grass cover explain the spatio-temporal variability of 

73 Rs

74  An intense sampling effort is needed to obtaining robust Rs estimates even in 

75 homogenous forests

76
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77 1. Introduction

78

79 Soil respiration (Rs), i.e., the production and subsequent emission of carbon dioxide (CO2) from 

80 the soil to the atmosphere, is one of the key processes contributing to the global terrestrial 

81 carbon (C) balance/budget. Rs is mainly produced by biological sources from the aerobic 

82 respiration of decomposers (i.e., heterotrophic respiration), as well as by plant roots and 

83 associated microorganisms living in the rhizosphere (i.e., autotrophic respiration) (Rodeghiero 

84 & Cescatti, 2008), but also by non-biological chemical oxidation reactions of C in organic 

85 matter, although at lower rates in this latter case (Raich & Schlesinger, 1992). Globally, the Rs 

86 emissions amount to a total of almost 80 PgC y-1, being the second largest C flux after CO2 

87 uptake by plants (Raich & Tufekciogul, 2000), which means more than half of an ecosystem’s 

88 total CO2 emissions come from Rs (Barba et al., 2018; Curiel Yuste et al., 2005; Janssens et al., 

89 2001). However, Rs is also probably the least well understood part of the C budget at global 

90 terrestrial ecosystems’ level, based primarily on the fact that the large spatio-temporal 

91 variability that characterizes this large flux requires of a substantial monitoring effort at 

92 different scales and hence, of a large investment in instrumentation for its correct monitoring 

93 (Bond-Lamberty & Thomson, 2010). Therefore, and despite the large critical mass of studies 

94 performed to understand it (Bond-Lamberty & Thomson, 2010), our knowledge on the 

95 mechanisms controlling this large flux remains very limited (e.g., Barba et al., 2013; Curiel 

96 Yuste et al., 2019). Hence, there is still a need for studies designed to explore the spatio-

97 temporal variability of Rs in order to be able to calibrate models and improve predictions of soil 

98 biological CO2 emissions in a changing environment.

99

100 The magnitude of Rs-related CO2 emissions varies in time and space depending on multiple 

101 drivers. A critical mass of studies has been designed to understand how the temporal variability 
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102 of Rs relates to different environmental factors such as soil temperature (Ts; e.g., Chen et al., 

103 2014; Davidson et al., 1998; Epron et al., 2004a), soil water content (SWC; e.g., Davidson et 

104 al., 2000; Oishi et al., 2013; Poblador et al., 2017), wind (e.g., Sánchez-Cañete et al., 2016), or 

105 the photosynthetic activity of the plants (e.g., Bahn et al., 2009; Curiel Yuste et al., 2005; 

106 Davidson et al., 1998). Nevertheless, it is important to highlight the discrepancy between the 

107 large number of studies undertaken to understand the large, but predominantly explained 

108 variability in time (generally seasonal) of soil CO2 fluxes (see for instance Bond-Lamberty & 

109 Thomson, 2010) and the relatively few studies undertaken to understand the enormous, but 

110 largely unexplained spatial variability of this very same flux. Several studies have proposed 

111 different factors that define local conditions as controls of the spatial variability of Rs at the 

112 mesoscale (scale of m). Most of these studies agree on the important role of variables such as: 

113 i). the spatial variability of soil moisture (Barba et al., 2013; Kosugi et al., 2007; Poblador et 

114 al., 2017); ii). the structure of the overstorey plant community (Barba et al., 2013; Epron et al., 

115 2004b; Law et al., 2001; Saiz et al., 2006; Søe & Buchmann, 2005); iii). variables directly 

116 related to the structure of the aboveground plant community, such as leaf production (Oishi et 

117 al., 2013), root density or biomass (Knohl et al., 2008), microbial biomass, and litter thickness 

118 (Hanson et al., 1993); iv). the quantity and quality of soil organic matter (Rayment & Jarvis, 

119 2000); or v). the C/N ratio and bulk density of the top soil (Khomik et al., 2006; Ngao et al., 

120 2012; Saiz et al., 2006). Other topographical aspects, such as the slope and the position within 

121 the landscape, have been however less studied although their contribution to explain the spatial 

122 variability of Rs might also be critical (Arias-Navarro et al., 2017; Berryman et al., 2015; Brito 

123 et al., 2010; Hanson et al., 1993; Riveros-Iregui et al., 2012;). All studies, nevertheless, 

124 conclude that our capacity to predict the spatial variability of Rs and its environmental controls 

125 remains largely insufficient (e.g., Allaire et al., 2012).

126
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127 The environmental controls of the spatial variability of Rs may also vary temporally, though, to 

128 the best of our knowledge, only few studies have been designed to deepen in this potential 

129 temporal axis of the spatial variation of Rs (Epron et al., 2004b; Khomik et al., 2006; Kosugi et 

130 al., 2007; Saiz et al., 2006; Shi et al., 2016; Søe & Buchmann, 2005). The complexity of the 

131 spatial variability of Rs can vary seasonally (Riveros-Iregui et al., 2012; Shi et al., 2016; Søe & 

132 Buchmann, 2005) specially because different environmental drivers may differently influence 

133 Rs depending on the season. For instance, the influence of water availability on the spatial 

134 patterns of Rs at the landscape-scale can exhibit a bidirectional behaviour, Rs being more 

135 sensitive to water availability during dry periods or in highly drained areas than during wetter 

136 periods or in low drainage areas (Riveros-Iregui et al., 2012). Likewise, the biomass and 

137 respiration of the autotrophic (roots and rhizosphere microorganism) and heterotrophic 

138 (microbial activity) components of Rs may vary in space and time depending on the 

139 phenological state of the vegetation and its nutrient and water demands (Barba et al., 2013; Søe 

140 & Buchmann, 2005). For this reason, understanding the drivers controlling the spatial 

141 variability of Rs at different temporal scales may help us to improve and modulate the sampling 

142 effort needed in order to obtain confident estimates of Rs. This also means that obtaining reliable 

143 integrative measures of Rs would require different sampling efforts throughout the year. It is, 

144 therefore, important to understand this seasonally-dependent complexity if we want to improve 

145 our knowledge on the sampling effort needed to get accurate and costly efficient estimates of 

146 Rs (Barba et al., 2013; Herbst et al., 2009; Rayment & Jarvis, 2000; Rodeghiero & Cescatti, 

147 2008).

148

149 We studied the spatio-temporal variability of soil respiration (Rs) in a 4.0 ha (i.e., 200 m x 200 

150 m) European beech (Fagus sylvatica L.) even-aged stand. Specifically, we focused on 

151 understanding the potential seasonal (i.e., spring, summer, autumn, winter) variations of Rs and 
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152 its environmental controls to: (1) determine the magnitude of their spatial variability and the 

153 sampling effort needed per each season (i.e., spring, summer, autumn, winter) to obtain robust 

154 average estimates of Rs; and (2) identify the main environmental controls and the architecture 

155 of their potential causal-effect relationships controlling the spatial variability of Rs along the 

156 seasons (i.e., during phenologically and climatically contrasted periods of the year). We 

157 hypothesized that, given the generally large influence of the aboveground plant distribution in 

158 explaining the spatial variability of Rs, the spatial variability of Rs will be low in our European 

159 beech even-aged study stand where trees are homogeneously distributed (H1). However, we 

160 also hypothesized that, along with other already well-studied and known factors, other factors 

161 (i.e., more spatially variable at stand level), such as the micro-topography of the terrain (i.e., 

162 slope) or the spatial distribution of the grass cover, will also play an important, indirect control 

163 over Rs due to their influence on the spatial variability of the soil water content (SWC) (H2). 

164 Finally, we also hypothesized that the predictive power of the different environmental controls 

165 of the spatial variability of Rs will vary throughout the year depending on the environmental 

166 constrains that act on Rs within a given season (e.g., soil temperature, Ts; or soil water content, 

167 SWC) (H3).

168

169 2. Materials and Methods

170

171 2.1.  Study site and stand

172

173 The study site (i.e., forest) is located in the central-southern part of Romania, in Mihaesti (Arges 

174 county; 45°05'11.8019"N, 25°03'58.0428"E), at an altitude of 570 m a.s.l. (Figure 1). This forest 

175 is largely dominated by European beech, although other tree species may also be found: 

176 hornbeam (Carpinus betulus L.), sessile oak (Quercus petraea (Matt.) Liebl.), or sweet cherry 
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177 (Prunus avium L.). The density within the whole forest located in Mihaesti is of 504 trees ha-1, 

178 with a total volume of 502 m3 ha-1, and a basal area of 33 m2 ha-1 (Mihaesti Forest Management 

179 Plan). Within this forest, we focused on a 4.0 ha European beech study stand (200 m x 200 m) 

180 (Figure 1). The European beech trees within the study stand are mainly adult and dominant (i.e., 

181 canopy level). According to the Mihaesti Forest Management Plan, most individuals within the 

182 study stand have an estimated age of ~ 85 years, which allows us to consider this study stand 

183 as being even-aged. The area where our study stand is located is characterized by a temperate 

184 continental climate, with a mean annual precipitation of ~ 875.21 mm, and a mean air 

185 temperature of ~ 6.31°C, respectively (estimates calculated for the 1901 – 2019 period; CRU 

186 TS v.4; Harris et al., 2020). The mean annual precipitation for 2016 and 2017 (i.e., the years 

187 when our measurements were performed; see below) was of ~ 991.80 mm and ~ 959.60 mm, 

188 respectively. As for the mean annual air temperature, it was of ~ 7.59 °C in 2016 and of 7.54 

189 °C in 2017 (CRU TS v.4; Harris et al., 2020). The soils are Eutric Cambisols (clay loam) 

190 covered with mull type humus, developed on a sandstone with marls parental material (Florea 

191 & Munteanu, 2012). The slope within the study stand is smooth and there are no important 

192 differences regarding the altitude between the upper part of the study stand and the lower part 

193 of the study stand (Figure 1, small panel).  Mean pH values range from 4.8 (0-10 cm soil depth) 

194 to 5.2 (11-20 cm soil depth) (WTW pH330i; WTW GmbH, Weilheim, Germany).

195

196 2.2.  Field soil respiration (Rs) and microclimatic factors measurements

197

198 The 4.0 ha selected study stand was divided into regular 25 m x 25 m squares (Figure 1, small 

199 panel). Soil respiration (Rs) measurements were then performed at each of the four corners of 

200 each of the 25 m x 25 m squares, resulting thus on a total of 81 measurement points. Rs 

201 measurements were all performed using a Portable Infrared Gas Analyzer (IRGA) connected to 
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202 a soil respiration standard chamber (EGM-4 and SRC-1; PP Systems, Amesbury, MA, USA). 

203 The soil respiration chamber covered a soil surface area of 78 cm2 and an enclosed volume of 

204 1171 cm3. Since some studies have shown a clear correlation between insertion depth, the 

205 amount of cut roots, and the lost soil effluxes (Silvola et al., 1996; Wang et al., 2005), no collars 

206 were inserted in the soil (Arias-Navaro et al., 2017; Epron et al., 2004b; Hanson et al., 1993; 

207 Maestre & Cortina, 2003; Poblador et al., 2017). Instead, we followed a similar procedure to 

208 the one described by Epron et al., 2004b and we inserted the edge of the respiration chamber to 

209 a depth of 1 cm into the soil, including the litter layer. Nevertheless, this was done only after 

210 firstly removing the herbaceous layer in order to avoid potential confounding effects of the 

211 vegetation on Rs measurements. Furthermore, to avoid potential gas leaks due to the shallow 

212 insertion of the respiration chamber (1 cm into the soil) with respect to a relatively thick low-

213 density litter layer (average 3.3 cm; Table 1), the respiration chamber was strongly pressed 

214 against the soil (i.e., with the help of one hand) over the whole time measurements were 

215 performed. Final Rs values were estimated for 120 seconds based on the linear increase of the 

216 CO2 concentration within the soil respiration chamber (i.e., a closed dynamic system). Soil CO2 

217 efflux measurements were always performed between 9 a.m. and 5 p.m. Additionally, the CO2 

218 effluxes were never measured during rainy days. Specifically, in case of heavy rains (i.e., > 15 

219 mm), field Rs measurements were postponed 36 h to avoid the “Birch effect” (Birch, 1958).

220

221 Simultaneously to the field Rs measurements, microclimatic measurements (i.e., soil 

222 temperature and the volumetric soil water content) were also performed at the same 81 

223 measurement points. Specifically, soil temperature (Ts) was measured at 5 cm soil depth using 

224 the STP-2 Soil Temperature Probe that was attached to the IRGA (PP Systems, Amesbury, MA, 

225 USA). As for the volumetric soil water content (SWC), this variable was measured at 20 cm 

226 soil depth using the TDR 300 soil moisture meter (Spectrum Technologies, Inc., Plainfield, IL, 
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227 USA). All field measurements (i.e., Rs, Ts, and SWC) spanned over a period of one complete 

228 year and thus over the four seasons: spring (May 2016), summer (August 2016), autumn 

229 (November 2016), and winter (February 2017). Within each of the 4 seasons and at each of the 

230 81 measurement points, we performed 3 independent measurements for each of the 3 variables 

231 (i.e., Rs, Ts, and SWC) and then averaged their corresponding values. In order to systematically 

232 perform Rs, Ts, and SWC measurements at exactly the same locations within the study stand, 

233 we marked the 81 measurement points with wood sticks that were maintained in their positions 

234 over the whole study period. Due to the large number of measurement points (i.e., 81) and thus 

235 to the considerable field effort and logistics that were needed, Rs, Ts, and SWC measurements 

236 were always performed during 2 consecutive days during each season.

237

238 2.3.  Forest structural and soil variables and the micro-topography of the terrain

239

240 At each of the 81 measurement points, soil samples were also collected to determine the soil 

241 organic carbon (SOC) content. All soil samples were collected in February 2017 after all 

242 seasonal measurements (i.e., Rs, Ts, and SWC) were finished. Soil sampling was performed 

243 using a metallic cylinder (5 cm diameter, and 20 cm depth) and consisted in extracting one soil 

244 core at each of the 81 measurement points. SOC of the upper 20 cm of the soil profile was 

245 determined through the dry combustion method using a CHNS organic elemental micro-

246 analyser (TruSpec Micro CHNS elemental analyser, LECO, New York, USA).

247

248 The thickness of the litter layer (hereinafter referred to as “litter” to simplify) was used as a 

249 proxy of litter biomass, which could not be measured due to logistics. The litter, at each of the 

250 81 measurement points, was measured only once during the 2016 summer, two weeks before 

251 the Rs, Ts, and SWC measurements started. Although, we acknowledge the fact that it would 
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252 have been better to measure the litter layer over the year (i.e., seasons), this was not possible 

253 due to logistics. Instead, we assumed that the place where there was more accumulated litter 

254 (i.e., at some point) would be the same place where more litter usually falls and the opposite 

255 for the places where there was less accumulated litter. Accordingly, the litter depth would be 

256 basically stable over the year (i.e., seasons). Simultaneously to the litter measurements, the 

257 micro-topography of the terrain (hereinafter referred to as “slope" to simplify), at each of the 

258 81 measurement points, was also measured.

259

260 In order to account for the impact of the surrounding vegetation on our field measurements (i.e., 

261 within a radius of 7 m around each of the 81 measurement points), we counted all the 

262 surrounding European beech trees (Ntrees) and we measured their diameter at breast height 

263 (DBH; at standard 1.3 m above from the ground) and their distance to the 81 sampling points. 

264 The 7 m radius was established considering the average crown diameter of the European beech 

265 trees found within the 4.0 ha study stand (Mihaesti Forest Management Plan). The DBH of the 

266 trees was measured using a calliper (Haglöf, Sweden), only European beech trees with a DBH 

267 > 6 cm being finally considered for this study. The measured distances were used to calculate 

268 the mean distances (MeanD) from surrounding European beech trees to the 81 measurement 

269 points. In order to estimate the basal area (BA; m2 ha-1) of all European beech trees with a DBH 

270 > 6 cm, we calculated the sum of all their cross-sectional areas at breast height. Finally, within 

271 the same radius of 7 m around each of the 81 measurement points, we also estimated the 

272 percentage (%) of the soil surface covered by grass and the percentage (%) of the soil surface 

273 covered by all tree seedlings. These estimations were done visually and agreed between several 

274 observers for data consistency.

275

276 2.4.  Statistical analyses
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277

278 We used different statistics (i.e., mean, M; standard deviation, SD; and relative variability, RV) 

279 to estimate relative rates of spatial variability of forest structural and soil variables (i.e., BA, 

280 SOC, litter, Ntrees, DBH, MeanD, % of grass, and % of seedlings) and of the micro-topography 

281 of the terrain (i.e., slope). We used the same statistics (i.e., mean, M; standard deviation, SD; 

282 and relative variability, RV) plus the absolute amplitude (A; defined as the difference between 

283 maximum and minimum values) to estimate relative and absolute rates of spatial variability of 

284 the microclimate (i.e., Ts and SWC) and soil respiration (Rs) variables. As most studies give the 

285 coefficient of variation (CV), we also calculated this statistic (i.e., expressed as a percentage) 

286 for the Rs variable alone and used it to compare our results with those published in previous 

287 studies. For the Ts, SWC, and Rs variables, all the above mentioned statistics were calculated 

288 considering both the four seasons separately and the four seasons combined (i.e., annual). The 

289 relative variability statistic (i.e., RV) was calculated following Lewontin 1966 and Webster 

290 2001 as the standard deviation of the logarithms (i.e., log10 in our case) of measurements. 

291 Relative variability allows thus to compare variations between different groups of observations 

292 (Lewontin 1966; Webster 2001).

293

294 In order to calculate the minimum number of measurements (i.e., N) needed to obtain robust 

295 estimates of Rs for each season (i.e., spring, summer, autumn, and winter), we used the 

296 following power equation (Davidson et al., 2002):

297

298 N = [(t×s)/(range/2)]2                   equation 1

299

300 where, t is represented by the critical value of the t-distribution (two-tailed test) for a given 

301 confidence level (99, 95, and 90%, respectively) and for 80 degrees of freedom; s is the standard 
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302 deviation of all spatially independent Rs measurements per each season (i.e., spring, summer, 

303 autumn, and winter); and range is the width of the desired interval around the mean of the Rs 

304 measurements of each season (i.e., spring, summer, autumn, and winter) in which a smaller 

305 sample mean is expected to fall (i.e., error limit of 10%, 20%, and 30% of the Rs measurements 

306 mean per each season).

307

308 We run geostatistical analyses (i.e., experimental (semi-) variograms and theoretical 

309 variograms) to determine the spatial autocorrelation of: i). the Ts, SWC, and Rs variables, 

310 separately for each season (i.e., spring, summer, autumn, and winter); ii). all forest structural 

311 and soil variables (i.e., basal area, BA; soil organic carbon content, SOC; thickness of the litter 

312 layer, litter; number of trees surrounding the 81 measurement points, Ntrees; diameter at breast 

313 height, DBH; mean distance from surrounding European beech trees to the 81 measurement 

314 points, MeanD; percentages of grass and seedlings cover around the 81 measurement points); 

315 and iii). the micro-topography of the terrain (i.e., slope). Specifically, the experimental (semi-) 

316 variograms (i.e., binned) were performed using the “variog” function available from the “geoR” 

317 R package (Ribeiro et al., 2020) based on classical estimators. Further on, the theoretical 

318 variograms were performed using the “likfit” function available from the “geoR” R package 

319 (Ribeiro et al., 2020). These analyses were run considering the restricted maximum likelihood 

320 (REML) parameter estimation, different trends (i.e., the mean part of the model; constant, first 

321 order polynomial, and second order polynomial), and functions (i.e., models for the correlation 

322 function; matern, exponential, Gaussian, spherical, circular, cubic, wave, powered exponential, 

323 Cauchy, gneiting, and pure nugget). A total of 693 models were run. The selection of the best 

324 models for each of the analysed variables was based on AIC (Akaike Information Criteria). The 

325 selected models were then used to perform ordinary kriging using the “krige.conv” function 

326 available from the “geoR” R package (Ribeiro et al., 2020). The “image” function available 
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327 from the “geoR” R package (Ribeiro et al., 2020) was finally used to visualize the spatial 

328 prediction based on the fixed covariance parameters. All selected models were validated using 

329 the “xvalid” function available from the “geoR” R package (Ribeiro et al., 2020).

330

331 To evaluate the microclimatic controls of the spatio-temporal variability of Rs, we run multiple 

332 regression functions using the “nls” function available from the “MASS” R package (Venables 

333 & Ripley, 2020). These functions were designed according to literature (i.e., Vicca et al., 2014). 

334 Briefly, different models were designed to represent the independent controls of soil 

335 temperature (Ts) and soil water content (SWC) on Rs, but also taking into account potential 

336 unimodal responses of Rs to both microclimatic factors. Rs data was log transformed prior to 

337 analyses as it did not meet the normality assumption.

338

log(Rs) ~ a + b*Ts equation 2

log(Rs) ~ a+ b*SWC equation 3

log(Rs) ~ a + b*Ts + c*Ts
2 equation 4

log(Rs) ~ a + b*SWC + c*SWC2 equation 5

log(Rs) ~ a + b*Ts + c*SWC equation 6

log(Rs) ~ a + b*Ts + c*SWC+ d*Ts
 2 equation 7

log(Rs) ~ a + b*Ts + c*SWC+ d*SWC2 equation 8

339

340 Where, a, b, c, and d letters stand for coefficients of the multiple regression functions. The co-

341 variance and multicollinearity between Ts and SWC were examined prior to analyses using the 

342 Variance Inflation Factor (VIF). Since the VIF was lower than 2, both microclimatic variables 

343 could be used within the same model (Zuur et al., 2010). The selection of the best model was 

344 based on the AIC (Akaike Information Criterion). For these analyses, the Ts, SWC, and Rs 
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345 variables were combined over the four seasons (i.e., spring, summer, autumn, and winter). All 

346 these analyses were conducted based on the assumption that the residuals of the models were 

347 normally distributed (p > 0.05) and independent. As the assumption of independence may be 

348 justified when data collection has been performed based on a probability sampling design (e.g., 

349 de Gruijter et al., 2006) and our data collection has been performed based on a grid sampling 

350 design, we acknowledge the fact that the spatial auto-correlation between data at nearby 

351 measurement points might impact some of the obtained results.

352

353 To describe potential complex causal-effect relationships that might determine the spatio-

354 temporal variability patterns of Rs, we run Structural Equation Models (SEMs). SEMs analyses 

355 allowed to test for the direct and indirect effects of all our measured in the field variables (i.e., 

356 microclimatic variables, forest structural and soil variables, and the micro-topography of the 

357 terrain) on seasonal (i.e., spring, summer, autumn, and winter) Rs. SEMs analyses were carried 

358 out using the “psem” function available from the “piecewiseSEM” R package (Lefcheck, 2016). 

359 To harmonize the results of the SEMs with those obtained from the multiple regression 

360 functions analyses, Rs was logarithmically transformed prior to analyses. Separated SEMs were 

361 built for each of the four seasons (i.e., spring, summer, autumn, and winter). All SEMs were 

362 designed based on hypotheses supported on simple univariate correlations between the different 

363 microclimatic (i.e., soil temperature, Ts; soil water content, SWC), micro-topography of the 

364 terrain (i.e., slope), soil (i.e., soil organic carbon content, SOC; and litter), and forest structural 

365 (i.e., basal area, BA; number of trees, Ntrees; diameter at breast height, DBH; mean distance, 

366 MeanD; % of grass; and % of seedlings) variables (i.e., predictor variables). Furthermore, their 

367 potential complex causal-effect relationships, that might determine the spatio-temporal 

368 variability of Rs, were also considered. To test the goodness of fit of the SEMs, the Fisher’s C 

369 statistic was calculated. The Fisher’s C statistic follows a chi-squared distribution and tests if 

Page 69 of 100 European Journal of Soil Science



For Peer Review

18

370 the model fits the data (p > 0.05) or not (p < 0.05). Several SEMs were run, the selection of the 

371 best one being based on the AIC (Akaike Information Criteria) (Lefcheck, 2016).

372 All statistical analyses were carried out in R (v. 4.0.0, R Core Team, 2020). Statistical 

373 relationships were considered significant at p < 0.05.

374

375 3. Results

376

377 3.1.  The spatial variability of the forest structural and soil variables around the 81 

378 soil respiration (Rs) measurement points

379

380 We found a relatively low spatial variability (i.e., expressed here as relative variability, RV; 

381 Table 1) for forest structural variables such as DBH (RV = 0.1) and MeanD (RV = 0.1) (Table 

382 1, Figure S1). Similar results were obtained also for soil variables such as SOC (RV = 0.1) and 

383 litter (RV = 0.1) (Table 1, Figure S1). On the other hand, the spatial variability of the understory 

384 vegetation (i.e., % of grass and % of seedlings) showed the highest values and was higher 

385 relative to the spatial variability of the overstorey vegetation (i.e., BA and Ntrees) (Table 1, 

386 Figure S1). High spatial variability values were found also for the slope (RV = 0.3) (Table 1, 

387 Figure S1).

388

BA SOC Litter Slope Ntrees DBH MeanD Grass Seedlings
Statistics

(m2 ha-1) (t ha-1) (cm) (%) (N ha-1) (cm) (m) (%) (%)

M 47.3 44.3 3.3 12.2 443 32.8 3.5 57.5 9.1

SD 16.9 12.9 0.7 8.3 200 6.3 0.8 31.1 8.6

RV 0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.4 0.3

Page 70 of 100European Journal of Soil Science



For Peer Review

19

389 Table 1. Mean (M), standard deviation (SD), and relative variability (RV; following Lewontin 

390 1966 and Webster 2001) values of forest structural, soil, and the micro-topography of the terrain 

391 variables. Where, BA, basal area of the European beech trees surrounding the 81 measurement 

392 points; SOC, soil organic carbon content; Litter, thickness of the litter layer; Slope, micro-

393 topography of the terrain within the study stand; Ntrees, the count of all the surrounding 

394 European beech trees around each of the 81 measurement points; DBH, average diameter at 

395 breast height (i.e., > 6 cm) of the European beech trees surrounding the 81 measurement points; 

396 MeanD, mean distance from the European beech trees to the 81 measurement points; Grass, 

397 percentage of the soil surface covered by grass; Seedlings, percentage of the soil surface 

398 covered by tree seedlings.

399

400 3.2.  Soil respiration (Rs) sampling effort needed per season

401

402 The calculation of the minimum number of measurements needed to obtain robust estimates of 

403 Rs for each season (i.e., spring, summer, autumn, and winter) showed how sensitive equation 1 

404 was to both the error limit (i.e., 10%, 20%, and 30%) and the confidence interval (90%, 95%, 

405 and 99%) (Table S1). Accordinly, the calculated sampling effort varied within and among 

406 seasons depending on the error limit and the confidence interval. Specifically, the sampling 

407 effort varied more strongly within seasons than among them (Table S1). As for the sampling 

408 effort needed from one season to another to obtain robust estimates of Rs, differences were not 

409 so strong especially between summer, autumn, and winter (Table S1). Spring was the season 

410 when less minimum Rs measurements seem to be needed to obtain robust estimates of Rs (Table 

411 S1) no matter the confidence level and the error limit (Table S1). On the other hand, winter was 

412 found to be the season when more sampling effort seems to be needed to obtain robust estimates 

413 of Rs no matter the confidence level and the error limit (Table S1). The sampling effort for the 
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414 summer season seems to be quite close to the winter one, while the sampling effort for the 

415 autumn season was found to be slightly lower (i.e., in between the spring and summer), no 

416 matter the confidence level and the error limit (Table S1).

417

418 3.3.  Seasonal and spatial variability of soil respiration (Rs), soil temperature (Ts), 

419 and soil water content (SWC)

420

421 As expected, both microclimatic variables (i.e., Ts and SWC) experienced very different 

422 seasonal patterns during the study period (Table 2, Figure 2). On one hand, Ts experienced large 

423 seasonal changes, peaking during summer and reaching its minimums during winter (Table 2, 

424 Figure 2a). On the other hand, values of SWC experienced less seasonality, reaching its 

425 minimums during summer, but being very stable and similar for the rest of the year (Table 2, 

426 Figure 2b). Seasonality of Rs followed a pattern similar to that observed for Ts, peaking during 

427 both spring and summer, and reaching its minimums during winter (Table 2, Figure 2c).

428

429 The spatial variability of the microclimatic variables was also markedly different (Table 2, 

430 Figure 3). Specifically, the spatial variability of Ts was generally smaller (RV values ranging 

431 from 0.01 to 0.10), within the range of 3.1 to 5.3 ºC of amplitude (Table 2, Figure 3A, D, G, J), 

432 than the spatial variability of SWC (RV values ranging from 0.10 to 0.14), within the range of 

433 31.9 to 54.6 % vol. of amplitude (Table 2, Figure 3B, E, H, K). Rs was the variable with the 

434 highest spatial variability (RV values ranging from 0.13 to 0.17), within the range of 2.5 to 11.9 

435 µmol CO2 m-2 s-1 of amplitude (Table 2, Figure 3C, F, I, L) and coefficients of variation above 

436 30% (Table 2). As concerning the standard deviation of the mean values, both Ts and SWC 

437 showed seasonal changes, summer being the season that showed the lowest values (Table 2). 

438 Standard deviation values for Rs also showed seasonal changes, being higher in spring and 
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439 summer and smaller in winter (Table 2), a pattern that followed the increase of the Rs rates 

440 (Figure 2).

441

Ts

(°C)

SWC

(% vol.)

Rs

(µmol CO2 m-2 s-1)Period

M SD RV A M SD RV A M SD RV CV A

Spring 14.4 0.9 0.03 4.6 33.0 10.2 0.14 54.6 6.3 2.0 0.13 31.1 8.7

Summer 17.4 0.6 0.01 3.1 24.9 6.6 0.12 31.9 6.4 2.4 0.17 37.6 11.9

Autumn 7.5 0.7 0.04 3.9 29.6 8.1 0.11 42.7 2.8 1.0 0.15 34.9 4.8

Winter 3.8 0.9 0.10 5.3 33.9 8.0 0.10 41.9 1.3 0.5 0.16 36.4 2.5

Annual 10.8 5.5 0.27 17.7 30.4 9.0 0.13 54.6 4.2 2.7 0.33 65.1 13.6

442 Table 2. Mean (M), standard deviation (SD), relative variability (RV; following Lewontin 1966 

443 and Webster 2001), Coefficient of Variation (CV; only for the Rs variable) expressed as a 

444 percentage, and absolute amplitude (A; defined as the difference between maximum and 

445 minimum values) values of soil microclimate (i.e., Ts, soil temperature; and SWC, soil water 

446 content) and soil respiration (Rs) measurements. The above mentioned statistics have been 

447 calculated both at the seasonal level (i.e., spring, summer, autumn, and winter) and over the 

448 four seasons combined (i.e., annual).

449

450 3.4. The spatio-temporal variability of soil respiration (Rs)

451

452 The model that best explained the microclimatic controls over the spatio-temporal variability 

453 of Rs was the model that considered unimodal responses of Rs to Ts and a negative linear 

454 response of Rs to SWC (i.e., equation 7) (Table S2, Figure 4). Specifically, the unimodal effect 

455 of Ts on Rs translated into a seasonal sensitivity of Rs to Ts: i.e., Rs response to Ts was stronger 

456 at lower Ts values (i.e., corresponding to autumn and winter seasons) than at higher Ts values 
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457 (i.e., corresponding to spring and summer seasons) (Figure 4a) when Rs reached its peak (Table 

458 2) and its response to the seasonal changes of Ts was low. The overall effect of SWC over the 

459 spatio-temporal variability of Rs was negative, this response being evidenced by the negative 

460 slope of this relationship (Figure 4b). This negative effect was further on highlighted by the 

461 overall relationship that was found between SWC and Rs at the spatial scale (i.e., results of the 

462 SEM analyses), where higher values of SWC were generally associated with low Rs rates (see 

463 Figures 4b and 5). Hence, the SWC effect on Rs was mainly driven by the spatially net negative 

464 effect of SWC on Rs.

465

466 Both multiple regression functions and SEMs agreed that the microclimatic variables (Ts and 

467 SWC; Figures 4 and 5) were, overall, the most important factors controlling the variability of 

468 Rs in our 4.0 ha study stand. Nevertheless, SEMs further showed how the architecture of the 

469 potential causal-effect relationships controlling Rs’s spatial variability increased in complexity 

470 (Figure 5) during spring and summer, when the spatial variability of Rs was maximal (see SD 

471 and A in Table 2 and Figure 2C). Specifically, SEMs highlighted how during the summer 

472 season, when the spatial variability of Rs was the highest (Table 2), the number of variables 

473 ultimately involved in controlling the spatio-temporal variability of Rs were also high compared 

474 to, e.g. winter or autumn (Figure 5). Also, the predictive capacity of the spatio-temporal 

475 variability of Rs varied seasonally (Table 3), the coefficient of determination (R2) ranging from 

476 0.10 in winter to 0.29 in autumn. SEMs showed how both the forest structural (Ntrees, MeanD, 

477 and % of grass cover) and the micro-topography of the terrain (i.e., slope) variables may 

478 strongly influence, directly and indirectly the spatio-temporal variability of Rs (Figure 5). 

479 Specifically, in spring and summer, the % of grass cover was negatively associated with Ts and 

480 SWC, which on their turn exerted a further positive and negative, respectively, influence on the 

481 spatio-temporal variability of Rs (Figure 5). Ntrees instead, always showed a direct and positive 
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482 effect on the spatio-temporal variability of Rs during the coldest seasons (i.e., autumn and 

483 winter; Figure 5). The slope (i.e., the micro-topography of the terrain within the study stand) 

484 was negatively related with MeanD in spring and summer, this relationship being especially 

485 important during summer when MeanD exerted some control (i.e., positive relationship) over 

486 Rs (Figure 5). 
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487

Season Response Predictor Estimate SE df p-value SRW Response R² n Fisher’s C df p-value

Rs Ts 0.0583 0.0154 78 0.0003 0.39 Rs 0.17 81 10.193 10 0.424

Rs Slope -0.0031 0.0017 78 0.0672 -0.19 MeanD 0.05

MeanD Slope -0.0213 0.0103 79 0.0413 -0.23 Ts 0.07
Spring

Ts Grass -0.0076 0.0031 79 0.0170 -0.26

Rs SWC -0.0086 0.0028 76 0.0030 -0.32 Rs 0.24 80 12.3 12 0.422

Rs Ts -0.0836 0.0320 76 0.0109 -0.27 SWC 0.11

Rs MeanD 0.0471 0.0227 76 0.0412 0.22 MeanD 0.05

SWC Slope -0.1890 0.0829 77 0.0253 -0.25

SWC Grass -0.0571 0.0226 77 0.0134 -0.28

Summer

MeanD Slope -0.0213 0.0103 79 0.0413 -0.23

Rs Ts 0.0504 0.0233 77 0.0331 0.22 Rs 0.29 81 1.581 2 0.454

Rs SWC -0.0076 0.0018 77 0.0001 -0.40 Ts 0.07

Rs Ntrees 0.0002 0.0001 77 0.0486 0.20
Autumn

Ts Ntrees 0.0008 0.0004 79 0.0190 0.26

Winter Rs Ntrees 0.0003 0.0001 79 0.0045 0.31 Rs 0.10 81 0 0 1
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488 Table 3. Statistics of the Structural Equation Models (SEMs) analyses showing causal-effect relationships that determine the spatio-temporal 

489 variability of soil respiration (Rs). Only significant (p < 0.05) and marginally significant (p < 0.1) causal relationships are given. Where, Ts, soil 

490 temperature; SWC, soil water content; Slope, micro-topography of the terrain within the study stand; Ntrees, the count of all surrounding European 

491 beech trees around each of the 81 measurement points; MeanD, mean distance from the European beech trees to the 81 measurement points; Grass, 

492 percentage of the soil surface covered by grass; SE, standard error; df, degrees of freedom; SRW, Standardized Regression Weights; R2, the 

493 coefficient of determination; n, sampling size; Fisher’s C statistic, follows a chi-squared distribution and tests if the model fits the data (p > 0.05) 

494 or not (p < 0.05). The right hand part of the table shows the statistics of the best models representing the spatio-temporal variability of Rs during 

495 each of the four different seasons (i.e., spring, summer, autumn, and winter).

496
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497 4. Discussion

498

499 We here report high soil respiration (Rs) coefficient of variation values (i.e., CV, ranging from 

500 31.1 in spring to 37.6 in summer; see Table 2) in an even-aged European beech study stand 

501 located in the central-southern part of Romania (Mihaesti, Arges county). These values are 

502 higher or comparable to other CV values mentioned in previous studies (e.g., Barba et al., 2013; 

503 Epron et al., 2004b; Kosugi et al., 2007; Ngao et al., 2012; Shi et al., 2016; Stoyan et al., 2000), 

504 although caution should be taken when comparing CV values among studies as they might also 

505 vary depending on the considered spatial scales (e.g., Darenova & Čater, 2020; Ngao et al., 

506 2012). Nevertheless, independent of this consideration, the high CV values we obtained here 

507 refute our first hypotheses (H1). In fact, the magnitude of the spatial variability of Rs during the 

508 warmest seasons (i.e., spring and summer) was comparable to the overall annual variability of 

509 Rs (see SD and A values in Table 2), which reinforces the idea of the large, though generally 

510 neglected, impact of Rs’s spatial variability on estimates of soil CO2 effluxes, even in 

511 homogenous ecosystems such as the European beech even-aged study stand that we considered 

512 here. The calculated large sampling effort needed to obtain robust estimates of Rs for any given 

513 season (being even larger in winter, see Table S1) further highlights the importance of the 

514 spatial variability of Rs as a potential source of uncertainty on local and global CO2 estimates 

515 and that should be taken into account. This is of upmost importance especially now, when the 

516 number of studies dedicated to scale up CO2 observations from local to global levels is growing. 

517 Accordingly, our study suggests that obtaining robust estimates of Rs at the local level may 

518 require of more intense spatial sampling efforts, than those generally carried out for logistical 

519 reasons, in order to address and diagnose uncertainties on CO2 estimates at the global level 

520 (e.g., Jian et al., 2018; Warner et al., 2019).

521
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522 The large spatio-temporal variability of Rs was strongly and directly determined by soil 

523 microclimatic conditions (Ts and SWC; Figures 4 and 5). Nevertheless, as hypothesized (H2), 

524 less considered variables such as the forest structural ones (i.e., grass, MeanD, Ntrees) or the 

525 micro-topography of the terrain (i.e., slope), proved to have a determinant, direct or indirect, 

526 effect on the observed spatio-temporal variability of Rs. In the case of the slope and the grass 

527 cover variables, they both showed further tight relationships with soil microclimatic conditions 

528 (i.e., Ts and SWC). These relationships were found to be significant in spring and summer 

529 (Figure 5), the two seasons when Rs values peaked (Table 2). Specifically, grass cover 

530 modulated the Ts variable in spring, with an indirect effect over Rs. In summer instead, when 

531 SWC usually registers low values and the competition for water and nutrients between the 

532 heterotrophic communities and the vegetation is high (Villegas et al., 2010), grass cover 

533 modulated the SWC availability, with an indirect effect over Rs. Our results highlight thus the 

534 importance of seldom considered variables, such as the micro-topography of the terrain (e.g., 

535 Arias-Navarro et al., 2017) and the vegetation (e.g., Søe & Buchmann, 2005), in Rs studies, as 

536 they may actually substantially impact, either directly or indirectly, the spatio-temporal 

537 variability of Rs. Instead, in our European beech even-aged study stand, we found no significant 

538 effects of variables generally well associated with the spatial variability of Rs, such as the litter 

539 (e.g., Epron et al., 2004b; Katayama et al., 2009; Saiz et al., 2006) or the soil organic carbon 

540 content (e.g., Søe & Buchmann, 2005). Although the fact that litter thickness was only 

541 measured once (i.e., during the 2016 summer; cf. 2.3. section), and thus may have generated a 

542 certain source of noise in our models (since the litter generally accumulates in autumn in 

543 deciduous-dominated forests), we assumed that our summer measurements contain very 

544 valuable information on the long-term spatial patterns of litter accumulation on the soil, and 

545 therefore, valuable information on where litter can have a greater impact on the spatial 

546 variability of soil processes in the long term. We are further aware of the limitations of our 
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547 study, since other variables, such as soil compaction (Schwen et al., 2015) or the spatial 

548 distribution of the root biomass (Søe & Buchmann, 2005), that have not been measured, may 

549 have also helped to explain the observed spatial patterns of Rs. However, we expect that effects 

550 of the spatial variability of soil compaction on, e.g. water infiltration or CO2 diffusivity (e.g., 

551 Schwen et al., 2015), will not be as high as in more intensively used stands since our study 

552 stand has not undergone any forestry intervention during the last 85 years and has no livestock 

553 load (according to the Mihaesti Forest Management Plan). On the other hand, and given the 

554 logistical inability to obtain estimates of the spatial distribution of root biomass, our exhaustive 

555 characterization of the distribution of trees and understorey (e.g., grass and seedlings) around 

556 the 81 measurement points emerged as a good proxy highly associated with the distribution of 

557 roots, assuming that proximity to vegetation is closely associated with root density in the soil 

558 (Søe & Buchmann, 2005).

559

560 Our results further emphasized the importance of understanding the temporal (i.e., seasonal) 

561 changes in the magnitude and controls of spatial variability of Rs. This variability could be 

562 especially important in temperate areas where microclimatic conditions (i.e., Ts and SWC), soil 

563 CO2 effluxes, and vegetation activity may vary dramatically throughout the year (e.g., Curiel 

564 Yuste et al., 2005). Indeed, and also as hypothesized (H3), our results indicated that, along with 

565 the observed seasonal variability in the magnitude of Rs, the variables that control the spatial 

566 variability of Rs were also subjected to strong seasonality. The architecture of the causal-effect 

567 relationships controlling Rs’s spatial variability varied between the four seasons and showed an 

568 increased complexity during spring and summer, while in autumn and especially in winter these 

569 relationships were much simpler (Figure 5). In line with these findings, spring and summer 

570 were also the seasons when the highest Rs values were registered, as expected for temperate 

571 ecosystems (e.g., Knohl et al., 2008; Saiz et al., 2006; Shi et al., 2016; Søe & Buchmann, 2005). 
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572 These high Rs values coincided thus with the warmest temperatures of the year, with the peak 

573 in plant and soil biological activity, and with the highest variability of Rs in absolute terms. 

574 These results are of upmost importance as they highlight the fact that in order to obtain robust 

575 estimates of Rs-CO2 derived emissions and to have a deeper understanding on the Rs variability, 

576 both spatial and temporal Rs controlling processes need to be taken into account.

577

578 Based on our results, we postulate that in this even-aged European beech study stand, the 

579 observed spatio-temporal changes and controls of the Rs respond to a seasonal shift that goes 

580 from temperature-controlled (i.e., winter and autumn) to water-controlled (i.e., spring and 

581 summer) processes. Figure 6 shows a conceptual framework, based on our results, that 

582 illustrates this shift in time. During cold periods, when the seasonal variability of Rs was, as 

583 expected in a temperature forest (e.g., Curiel Yuste et al. 2003), strongly limited by Ts (Figure 

584 4a), the spatial variability in Rs followed the low spatial variability of Ts (represented as 

585 standard deviation of the mean Rs or Ts in Figure 6), resulting in low spatial variability of Rs 

586 (Table 2, Figure 6). Most factors had insignificant effects over the spatial variability of Rs 

587 during the winter season, when only Ntrees (i.e., the number of European beech trees surrounding 

588 the 81 measurement points) showed a positive relationship with Rs (Figure 5). These results 

589 might be related with a larger autotrophic respiration contribution to Rs during winter when 

590 European beech trees are able to maintain part of their fine root biomass alive (e.g., Büttner and 

591 Leuschner, 1994; Zwetsloot et al., 2019). A similar result was found for the autumn season, 

592 when Ntrees also showed a positive relationship with Rs (Figure 5). During warm periods (i.e., 

593 summer), when the soil metabolic activity is at its peak (reflected in higher rates of Rs; Table 

594 2, Figure 2), the increase in temperature and vegetation activity increases the demand for SWC 

595 (evapotranspiration), which then becomes a limiting factor for Rs. Although our SWC 

596 measurements were too deep (i.e., 20 cm soil depth) to capture this increasing water control 
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597 (i.e., our model could not capture a positive effect of SWC on Rs; see Figure 4b), this seasonal 

598 water limitation of Rs was evidenced by the low sensitivity to temperature that Rs experienced 

599 during the warmer periods (Figure 4a), which is the shape typically observed when Rs responds 

600 to a shift that goes from temperature-controlled to water-controlled processes (e.g., Curiel-

601 Yuste et al., 2003, 2005; Davidson & Janssens, 2006). This shift towards Rs’s spatial variability 

602 being water-controlled resulted in an increase in Rs variability, which subsequently become 

603 more spatially variable than temperature (reflected in increased standard deviation values of Rs 

604 with respect to Ts; see Figure 6). The shift towards a water-limited Rs system that generated 

605 spatial variability of Rs (Figure 6) also increased the complexity of Rs controls (Figures 5 and 

606 6). This is because the increase in vegetation activity triggered a higher competition for water, 

607 as evidenced by, e.g. the strong negative influence of tree proximity (i.e., positive effect of 

608 MeanD in summer on Rs; Figure 5) or the strong negative effect of the grass cover over SWC 

609 during summer (Figure 5). Hence, the evaporative demand of the vegetation (i.e., MeanD and 

610 grass cover) exerted direct and indirect controls over the spatial variability of Rs during dry, 

611 warm, and phenologically active periods (i.e., spring and summer), contributing to an increase 

612 in the spatial variability of Rs. The slope (i.e., the micro-topography of the terrain) was another 

613 variable that contributed, directly and indirectly, to the increase in the spatial variability of Rs 

614 during warmer periods characterized by higher water demand (Figure 5). Slope may have large 

615 impacts over water availability and water balances by creating spatial variability in e.g. the 

616 incidence of solar radiation at the floor level and water run-off (Berryman et al., 2015; Riveros-

617 Iregui et al., 2012), with further consequences on soil CO2 effluxes, even across short distances 

618 (Arias-Navarro et al., 2017). It is likely that, at our study stand, the spatial distribution of the 

619 slopes captured the spatial variability of SWC during drier periods (i.e., summer) better than 

620 our own SWC measurements taken at 20 cm depth. This is because during periods of high water 

621 demand (i.e., summer), SWC decreases very fast in the uppermost layer of the soil, where most 
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622 of both autotrophic and heterotrophic activities concentrate (Curiel Yuste et al., 2003, 2005), 

623 whereas at 20 cm depth SWC remains above the volumetric content thresholds at which SWC 

624 limits Rs, as stated by the fact that no positive relationship was found between SWC and Rs 

625 (Figures 4b and 5).

626

627 5. Conclusions

628

629 We here highlight the fact that the spatial variability of Rs proves to be high even in a relatively 

630 homogenous even-aged European beech study stand of 4.0 ha. Accordingly, our estimates 

631 regarding the sampling effort needed to obtain robust estimates of Rs further suggest that most 

632 studies to date might have probably underestimated the sampling effort needed to obtain 

633 accurate spatial estimates of Rs throughout the year. Our study further shows that the spatial 

634 variability of Rs, varied significantly throughout the year, peaking in spring and summer and 

635 being low in winter, coinciding thus with the seasonal variability in the absolute magnitude of 

636 Rs. We here postulate that in this European beech-dominated even-aged study stand, the 

637 observed large seasonal changes in the magnitude and controls of the spatial variability of Rs 

638 respond to a seasonal shift that goes from temperature-controlled (i.e., winter and autumn) to 

639 water-controlled (i.e., spring and summer) processes. This is because when temperatures and 

640 water demands are high, the evaporative demand of both the overstorey but also the understorey 

641 vegetation, as well as the micro-topography of the terrain (i.e., slope), generate spatial 

642 complexity in soil Rs. During winter, temperature limits processes and prevents most other 

643 factors from spatially influencing Rs. In conclusion, obtaining robust, accurate estimates of Rs-

644 derived CO2 effluxes, may profit from: (1) a deeper understanding of how the spatial patterns 

645 of Rs varies across seasons, e.g., understanding when processes shift from being controlled by 

646 temperature (i.e., winter and autumn) to being controlled by water (i.e., spring and summer); 
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647 and (2) a deeper understanding on how, when, and where, factors such as the micro-topography 

648 of the terrain or the plant-plant and the plant-soil competition for water may contribute to this 

649 spatial variability of Rs. In line with our findings, it would be interesting to test in future at 

650 which extent this observed trends apply to other types of ecosystems or if they may also be 

651 extrapolated to latitudinal and/or altitudinal gradients, i.e., whether Rs’s spatial complexity may 

652 increase considering gradients that go from temperature-limited (e.g., temperate) to water-

653 limited (e.g., arid and semi-arid) systems, or from topographically simple (e.g., valleys) to 

654 topographically more complex (e.g., mountains) systems.

655
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929 Figure captions:

930 Figure 1. Map indicating the location of Romania within Europe and the location of the study 

931 site in the central-southern part of Romania (i.e., Mihaesti, Arges county). The small panel 

932 shows the sampling design: a 4.0 ha (i.e., 200 m x 200 m) even-aged European beech stand 

933 divided into 25 m x 25 m squares. The scale that appears on the right size of the small panel 

934 indicates the altitude (m a.s.l.) gradient within the study stand.

935 Figure 2. Seasonal (i.e., spring, summer, autumn, and winter) patterns of: a) soil temperature 

936 (Ts); b) soil water content (SWC); and c) soil respiration (Rs).

937 Figure 3. Spatial prediction based on the fixed covariance parameters generated by performing 

938 geostatistical analyses on the seasonal (i.e.., spring, summer, autumn, and winter) spatial 

939 distribution of soil temperature (Ts), soil water content (SWC), and soil respiration (Rs).

940 Figure 4. Representation of the best model (Table S2) that explained the microclimatic controls 

941 (soil temperature, Ts; and soil water content, SWC) over the spatio-temporal variability of soil 

942 respiration (Rs): a) Rs response to Ts; and b) Rs response to SWC. Black opened dots represent 

943 the row data, while red (i.e., Rs response to Ts model) and blue (i.e., Rs response to SWC model) 

944 opened dots represent the fitted by the best model data. To ease the interpretation, the results of 

945 the multiple regression functions, for which Rs was logarithmically transformed, were back-

946 transformed to the original scale.

947 Figure 5. Path diagrams showing the results of the Structural Equation Models (SEMs), 

948 represented by seasons. Arrows indicate causal relationships: positive and negative effects are 

949 indicated by solid and dashed arrows, respectively. Only the significant (p < 0.05) and 

950 marginally significant (p < 0.1) relationships were represented (see Table 3). The number given 

951 next to each arrow represents the Standardized Regression Weights (SRW) values given in 

952 Table 3. Path diagrams are represented in a plot where the X-axis represents the seasons (i.e., 

953 spring, summer, autumn, and winter) and the Y-axis represents the mean values of the soil 
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954 respiration (Rs) flux for each season. Where, Grass, percentage of the soil surface covered by 

955 grass; Ts, soil temperature; Rs, soil respiration; Slope, micro-topography of the terrain within 

956 the study stand; MeanD, mean distance from the European beech trees to the 81 measurement 

957 points; SWC, soil water content; Ntrees, the count of all the surrounding European beech trees 

958 around each of the 81 measurement points.

959 Figure 6. Conceptual framework illustrating how the observed spatio-temporal changes and 

960 environmental controls of the soil respiration (Rs) respond to a seasonal shift that goes from 

961 temperature-controlled (i.e., winter and autumn) to water-controlled (i.e., spring and summer) 

962 processes. The X-axis represents the seasonal (i.e., winter, autumn, spring, and summer) soil 

963 temperature (Ts) changes. The Y-axis represents the spatial variability of soil temperature (Ts) 

964 and Rs represented as the standard deviation (SD) of the mean. The path diagrams, obtained 

965 from the Structural Equation Models (SEMs; Figure 5), are also represented to show how the 

966 complexity of the controls of Rs increases along with the spatial variability of Rs.  In the upper 

967 part of the figure, the shift that goes from temperature-controlled (i.e., winter and autumn) to 

968 water-controlled (i.e., spring and summer) processes over the spatial variability of Rs, is 

969 indicated. The small figure panel included within the conceptual framework is represented by 

970 Figure 4a, with the red arrows indicating the seasonal temperature control of Rs (winter and 

971 autumn) and the flattening of this control during warmer periods (spring and summer). Where, 

972 Ntrees, the count of all the surrounding European beech trees around each of the 81 measurement 

973 points; SWC, soil water content; Grass, percentage of the soil surface covered by grass; Slope, 

974 micro-topography of the terrain within the study stand; MeanD, mean distance from the 

975 European beech trees to the 81 measurement points.
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Minimum soil respiration (Rs)

measurements number (i.e., N)

Confidence interval
Season

Error limit
90% 95% 99%

±10% 112 160 281

±20% 28 40 70Spring

±30% 12 18 31

±10% 156 223 392

±20% 39 56 98Summer

±30% 17 25 44

±10% 141 202 355

±20% 35 51 89Autumn

±30% 16 22 39

±10% 164 234 412

±20% 41 59 103Winter

±30% 18 26 46

Table S1. Minimum number of measurements (i.e., N) needed to obtain robust estimates 

of soil respiration (Rs) for each season (i.e., spring, summer, autumn, and winter) 

according to equation 1 (cf. 2.4. Statistical analyses). Results are given for 90%, 95%, 

and 99% confidence intervals. The range is the width of the desired interval around the 

mean of the Rs measurements of each season (i.e., spring, summer, autumn, and winter) 

in which a smaller sample mean is expected to fall (i.e., error limit of 10%, 20%, and 30% 

of the Rs measurements mean per each season).
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Model      a     b       c      d AIC R2

log(Rs) ~ a + b*Ts 0.6002*** 0.0843*** 125.30 0.85

log(Rs) ~ a+ b*SWC 2.0141*** -0.0166*** 505.55 0.27

log(Rs) ~ a + b*Ts + c*Ts
2 0.1483* 0.2002*** -0.0055*** 83.45 0.87

log(Rs) ~ a + b*SWC + c*SWC 2 2.9595*** -0.0772*** 0.0009*** 491.43 0.35

log(Rs) ~ a + b*Ts + c*SWC 0.7544*** 0.0825*** -0.0044* 121.50 0.85

log(Rs) ~ a + b*Ts + c*SWC+ d*Ts
2 0.3144*** 0.2008*** -0.0051** -0.0056*** 76.76 0.87

log(Rs) ~ a + b*Ts + c*SWC+ d*SWC2 1.0960*** 0.0812*** -0.0252** 0.0003* 117.65 0.85

Table S2. Results of multiple regression functions used to explain the spatio-temporal variability of soil respiration (Rs). The table shows the 

models that were considered (i.e., following Vicca et al., 2014), the estimated coefficients of the multiple regression (a, b, c, and d ), the AIC 

(Akaike Information Criterion) values, and the coefficient of determination (R2) values. The best model, based on AIC, is marked in bold. Where, 

superscript asterisks of the estimated coefficients of the multiple regression (i.e., a, b, c, and d) stand for: p-values < 0.05 (*), p-values < 0.01 (**), 

and p-values < 0.001 (***), respectively.
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Figure caption:

Figure S1. Spatial prediction based on the fixed covariance parameters generated by 

performing geostatistical analyses on the seasonal spatial distribution of: BA, basal area 

of the European beech trees surrounding the 81 measurement points  (panel A); SOC, soil 

organic carbon content (panel B); Litter, thickness of the litter layer (panel C); Slope, 

micro-topography of the terrain within the study stand (panel D); Ntrees, the count of all 

the surrounding European beech trees around each of the 81 measurement points (panel 

E); DBH, average diameter at breast height (i.e., > 6 cm) of the European beech trees 

surrounding the 81 measurement points (panel F); MeanD, mean distance from the 

European beech trees to the 81 measurement points (panel G); Grass, percentage of the 

soil surface covered by grass (panel H); Seedlings, percentage of the soil surface covered 

by tree seedlings (panel I).
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