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Summary. A generalization of flow games, namely,
flow games with committee control is considered, to
obtain a representation of non-negative balanced games.

The committee control is modeled with the aid of

simple games. Linear production games with com-
mittee control are also studied and results on the bal-
ancedness of such games are obtained.

Zusammenfassung. Eine Verallgemeinerung von Fluf3-
spielen, namlich solchen mit Komitee-Kontrolle, wird
in der vorliegenden Arbeit betrachtet, um eine Dar-
stellung nicht-negativer ausgewogener Spiele zu erhal-
ten. Die Komitee-Kontrolle wird mit Hilfe einfacher
Spiele modelliert. Ebenso werden lineare Produktions-
spiele mit Komitee-Kontrolle untersucht, und Ergeb-
nisse zur Ausgewogenheit solcher Spiele werden herge-
leitet.

1. Introduction

Kalai and Zemel [5] introduced flow games and proved
that every flow game is totally balanced and every non-
negative totally balanced game is a flow game. Our
main aim in this paper is to derive a similar result for
the larger class of balanced games and a generalization
of flow games, namely, flow games with committee
control. We will also look at a generalization involving
committee control of the linear production game intro-
duced by Owen [7]. In Sect. 2 we will give the necessary

definitions and notations. In Sect.3 the main result
concerning balanced games and flow games with com-

mittee control is proved. Section 4 is dedicated to linear
production games with committee control and to
some remarks on related work.

2. Flow Games with Committee Control

In this section we will introduce and define the con-
cepts that we will need throughout the paper.

A cooperative game in characteristic function form
is an ordered pair (/V,v) where N={1,2,....,n} is a
finite set, the set of players and v is the characteristic

function which assigns to every subset of NV a real

number with the restriction that v assigns O to the
empty subset. When there can be no ambiguity about
the set of players we identify (N, v) with the charac-
teristic function ». Elements of 2V . that is, the set of
subsets of NV, are called coalitions and for every coali-
tion S the number v(S) is regarded as the worth of S,
i.e. that which the members of S can achieve if they
work together. The question which arises is how to
divide v(/V) once the grand coalition V is formed. A
distribution among the players is represented by a
payoff vector x=(xy,...,Xp) with x(V) = EN X;=
i €
v(N). Here x; is the amount that the i-th player ob-
tains. In cooperative game theory several solution
concepts which assign a payoff vector or a set of pay-
off vectors to a cooperative game are studied. In this
paper we will only look at the core of a game. The core

of a game (X, v) is denoted by C(v) and is defined by

C(v) := {x €ER" : x(N)=0v(N), x(S) = v(S) for every
se 2y,

Here and the remainder of this paper x(S) = 2 Xx;
iES
for every S€2". If v(V) is divided according to an
element of C(v) no coalition has an incentive to leave
the grand coalition because no coalition can do better
on its own. The core of a game can be empty. A game

is called balanced if it has a non-empty core. For every
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coalition S we define the subgame (S, vg) of (N, v) by
ve(T)=v(T) for every TCS. A game is said to be
totally balanced if all its subgames are balanced.

A game (N, v) is called (0, 1)-normalized if v(i) =0
foreachi€Nand (V)= 1.

A simple game is a cooperative game (/V, v) with
v(N)=1 and v(S)€ {0,1} for every SE 2N Such a
game describes a situation where a coalition § is either
all powerful, v(S) = 1, or completely powerless, v(5) = O.
Simple games can be used to model voting situations
and situations with committee control. A player:/ in a
simple game 1s called a veto player if v(S)=1 implies
1 €S. Player i is called a dictator if v(S)=1 iff i €S.
[t is a well known fact that a simple game has a non-
empty core iff the set of veto players of the game is
non-empty. Let (N, v) be a simple game with set of
veto players V' # (). Then

Cw=x€R":x(V)=1,x; =20 foralli € N}.

Flow games are defined as follows. Let G be a directed
network with set of vertices P and set of arcs L. For
every p € P let B(p) denote the set of arcs which start
in p and E(p) the set of arcs which end in p. Every
arc /€L has a certain capacity ¢(/) 20 and belongs
to a player i € N. We distinguish two different vertices
from the others, a source and a sink. For each S € 2"
let Gg be the network obtained from G by keeping all
the vertices but removing all arcs which are not owned
by a member of S. The new set of arcs is denoted by
Lgs. Note that G5y =G and Ly = L. A flow from source
to sink in such a network is a function f from Lg to IR

with 0 < f(/)<c(/) for each /€ Lg and such that for
every vertex p except the source and the sink

2 f(l).

IS E(p)

2" Sy

lEB(p)

The value of such a flow is

2 Jil)= 2

[ € B(source) | € E (source)
S A T L e S (4
[ € E(sink) I € B(sink)

In the flow game corresponding to this network v(.S)
is defined to be the value of a maximum flow from
source to sink in Gg.

Let A be a subset of P such that the source is an
element of A and the sink is not. By (4, P\A)g we
denote the subset of Lg consisting of all arcs which
have as their starting point an element of 4 and as
their endpoint an element of P\4. Formally,

(A4, P\A)g ={l€Lg:l€B(p) forap €A and
€ E(p) foragEP\A}.
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Such a subset of Lg is called a cut of the network
(Gs. Note that a cut of G can be made into a cut of
Gg by removing from it all arcs which are not owned
by a member of S. The capacity of a cut is the sum of
the capacities of the arcs that it contains. A well-known
theorem of Ford and Fulkerson [3] states that the value
of a maximum flow in a network is equal to the capacity
of a minimum cut, i.e., a cut with minimum capacity.
Kalai and Zemel [5] use this theorem to prove that a

flow game is totally balanced.

Here we want to combine the notions of flow games
and simple games to define flow games with committee
control. In these games the arcs are not owned by the
players but are controlled by committees consisting of
subsets of players. This committee control is modeled
with the aid of simple games. To every arc /[EL a
simple game w; is assigned. A coalition § is said to con-
trol / iff w,(S) = 1. The network Gg is obtained from G
by keeping all the vertices and removing all arcs which
are not controlled by §S. Again Lg denotes the resulting
set of arcs and Gy =G, Ly =L. Again v(S) is defined
to be the value of a maximum flow in Gg. The fol-
lowing example shows that a flow game with com-
mittee control can have an empty core.

Example. Let N={1, 2}, P = {source, sink}, L consists

of one arc directed from the source to the sink with
c(/)=10, wi(S)=1 forevery S € 2V\{0}. Then v(S)=10

source e >— e sink

Fig. 1

for every S € 2N\{Q)} and it follows that C(v) = 0.

Flow games with ownership can be seen as flow
games with committee control as well. The simple
game which describes the control of an arc is then
defined to be the game with the owner as dictator.
For every i € N we denote the game with 7/ as dictator
by 6;. Hence, §;(S) =1 iffi € S.

[t follows from Kalai and Zemel [5] that flow games
with committee control, where all the simple games
describing the control of the arcs, have dictators, are
totally balanced. In the next section we will see that

these are not the only flow games with committee con-
trol which are balanced.

3. Balanced Games

In this section we will give a representation of non-
negative balanced games as flow games with committee
control. First we will show that a flow game with com-
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mittee control where all the controlling games have
veto players is balanced.

Theorem 1. Let (N, v) be a flow game with committee
control such that for all €L the simple games w
which describe the control of | have a non-empty set
of veto players V;. Then C(v) is not empty.

Proof. Let (A4, P\A) be a minimum cut in the network
G. For each [E€(A4, P\A) let z' € C(w;). We define
an x € R"” by

Xp= >  c¢()z; foreach iEN.
I€(A,P\A)

Then

x(N) = 2 c(l) = v(N).
|E(A, P\A)

Here the last equality follows from the theorem of
Ford-Fulkerson. Further,

x(S) = 2 o(l) X zi2> 2 c(I)w;(S)

|E (A, P\A) ieS 1€ (A, P\A)
= 2 c(l) = v(S).
€ (A,P\A)g

Here the second equality follows from the fact that
we can obtain the cut (4, P\A)g in the network Gg
by removing all /€ (4, P\4) for which w;(§)=0. The
last inequality follows from the Ford-Fulkerson theo-
rem. So x as defined above is an element of C(v).

Although the existence of veto players in all the con-
trolling games is sufficient to guarantee the balanced-
ness of a flow game with committee control, it is not a
necessary condition. In the proof above we only used
the fact that there exists a minimum cut such that all

arcs belonging to it are controlled by games which have
veto players. But even this is not necessary for the flow

game with committee control to be balanced as the
following example shows.

Example. Let N={1, 2, 3,4}. The network G is given
below, the numbers denote the capacities of the arcs.

W,

source > Sink

- 10
Fig. 2 W,
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The winning coalitions of w; are {1, 3}, {2, 4} and
N, those of w, are {1,2} and NV and those of wj are
{3,4} and N. Note that there is no minimum cut such
that all arcs belonging to it have control games with
veto players. The core of this game, however, is not
empty. An element of the core, for example, is (6, 95,
519

The remainder of this section will be devoted to the
proof of the fact that every non-negative balanced game
can be seen as a flow game with committee control
where all arcs are controlled by simple games with veto
players. In the following we will call such games veto
rich flow games.

We will need the following theorem of Spinetto [3].

Theorem 2 (Spinetto). Every (O, 1)normalized balanced
game (N, v) with v=0 can be written as a convex
combination of balanced simple games.

The following lemma states that the veto rich flow

games form a cone and that the minimum of two veto
rich flow games is again a veto rich tflow game.

Lemma 3. Let (N, vy) and (N, v,) be two veto rich flow

games. Then the games (N, v, A Vy) and (N, av; + [v;)

with a, 8= 0, defined by (v1 A V)(S) = 01(S) A V,(5) =
min {v;(S), v, (S)} and (av; +Bv,)(S) = av,(S) + Lv,(S)

are also veto rich flow games.

Proof. Let G be the network from which v, is obtained
and G, the network from which v, is obtained. Then
V1 A U, is obtained from the network which results by
combining G; and G, in series, hereby identitying the
sink of G with the source of G5.

Multiply all capacities in G, by « and all capacities
in G, by 8. Then av, +fv; is obtained from the net-
work which results by combining G, and G, with their
new capacities parallel, hereby identifying the sink of
G, with the sink of G, and the source of G with the

source of G5, . B

Theorem 2 and Lemma 3 together yield the proof of
the following lemma.

Lemma 4. Every (O, 1)-normalized non-negative bal-
anced game is a veto rich flow game.

Proof. Let (N, v) be a (0, 1)-normalized non-negative
balanced game. From theorem 2 it follows that there

exist simple games wj,w,,..., Wi, each having a
non-empty set of veto players and a,..., ax with
a; +...+to =1 and «; =0 for all ne ...k} such

that v=a;w; +...+ ogwy. Trivially, each w; 1s a veto
rich flow game with one arc with capacity 1 and with



86

committee control described by w;. With Lemma 3 it
follows that v is a veto rich flow game. iR

Now we can prove our main theorem.

Theorem 5. Every non-negative balanced game is a veto
rich flow game.

Proof. Let (N, v) be a balanced game with v = 0.
We define a game (/, u) by

u(S) :=min { £ (), v(S)}.

€S

Then (N, u) is balanced, C(u) = {(v(1), ..., v(n))}. For

every T€ 2V\{P} let wy be the simple game defined

by wr(T) =wp(N)=1and wp(S)=0tfor S 7, V.
Then

u=min{ 2 v(i)d;,

The games 6; and wq are veto rich flow games and
with Lemma 3 it follows that u is a veto rich flow
game. Hence if v=u we are done. If v #u we define
a game (N, w) by

v(S) —u(S)
v(N)— 2 (i)

ieN

w(S) =

Note that v(N)— 2 o(i)> 0 because there exists an
iEN
S with 2 v()<v(S) and C(v) # (. The game w 1is
ieS
non-negative and (0, 1)-normalized as can be verified
straightforwardly. Let x € C(v). We define y € R" by

x;— (i)
y; = — for each i EJV.
v(N)— 2 (i)
iEN

Then y(N)=1=w(/N) and

y(S) = (v(N) = I_EEN v(i)) ™" (x(S) - és (7))
= (v(V) — ng v(i))™ " (v(S) — IES v(i))

= ()= Z ()" (v(S) —u(S)) =w(S)

N

if v(S)= 2 v(i).
iES
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) =@M - Z v@) '(x(S)- Z v(i)=0

=T I ES
=(oV) = Z o))" @(S) - u(S)) = w(S)
i N
if 9(S)< Z v()).
1 €S

Hence y € C(w) and w is balanced. It follows with
Lemma4 that w is a veto rich flow game. Further,

v=(NN)— 2 v@)w+u

e N

and with Lemma 3 it follows that v is a veto rich flow
game.

Theorem 1 and Theorem 5 together state that the
family of balanced games coincides precisely with the
family of veto rich flow games.

4. Linear Production Games with Committee Control

Owen [7] introduced linear production games. In these
games the players are producers each of which owns
certain amounts of m different resources. The resource
vector of player i € NV is denoted by b= (b{, g D5 Y2 0.
These resources can be used to produce r different
products. To produce one unit of productj € {1,...,r}
one needs aj; units of the k-th resource, where
k€ {1,...,m}. One unit of product j can be sold at a
given market price p;. Every producer wants to maxi-
mize his profit by producing that combination of
products that will yield him most when sold. The
producers can pool their resources in order to max-

imize their profits. A linear production game (N, v)
is defined by

v(S) :=max p -x subject to

x ER’, x =0, xA <b(S). ()

Here b(S) = ES b' is the resource vector of coalition
i €
S and A4 = [ajx]j=1, k=1 is the production matrix. We
assume that aj =0 foralljE€{1,...,r}, kK E WP
and that for all j there is a £ such that a;; > 0. (It is
not possible to produce something with nothing.) Then
the linear optimization problem given above is feasible
and bounded and there exists a vector of products for
which the maximum is achieved. Owen [7] has proved
that linear production games are totally balanced. Here
we want to study a generalization of the linear produc-
tion game, the linear production game with committee
control. In the latter the resources are available in por-
tions. For k€ {l,...,m} there are d; portions of
resource k. Such a portion we denote by By. The total
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amount of resource k which is available is By =
q=1
Each portion By is controlled by committees of players.
For every B a simple game (N, w) describes the con-
trol. Coalition S can use B only if S is winning in wy.

Let BZ(S) := B - wd(S). The total amount of the k-th
dic

resource available to coalition S is B, (S) := 2 BZ(S).
q=1

The resource vector B(S) of coalition S has coordinates

Bl (S): Bz(S): L Bm(S)*

The characteristic function v of the linear production
game with committee control is again given by (*) but
with b(S) replaced by B(S). The following theorem
shows that, just as in the case of flow games with com-
mittee control, if the simple games are balanced then

the whole game will be balanced.

Theorem 6. Linear production games with committee
control where all the simple games which describe the
controls are balanced, have a non-empty core.

Proof. Let (N, v) be a linear production game with
committee control which satisfies the condition of the

theorem.
From the duality theorem of linear programming

it follows that

v(S) = min B(S) -y
yER™, y=20, Ay 2p.

subject to

This is the dual problem of (*). Lety = (¥, ...,V m) be
a solution of the dual problem which determines v(/V).
Let zZ be a core element of wg. Let z € IR" be defined

Here the first inequality follows from the fact that

d dy

By (S) = 21 BE(S) < 21 Biz{(S)
q= g=

87

and the second inequality follows from the fact that

e

y 1is feasible for the dual problem which determines

v(S) because the constraints in the dual problem are
independent of S. So z € C(v). ]

That linear production games with committee control
are indeed generalizations of the classical linear produc-
tion games can be seen as follows. Let (/V, v) be a linear
production game where each i € NV has a resource vector
b'=(b},...,b),). For every kE€{1,...,m} we take
dp=n and Bf =bg for q€{1,...,dy}. The simple
game which describes the control of Bf is taken to be
the dictator game 6,. Straightforward verification
shows that the linear production game with committee
control that we obtain in this way is equal to (X, v).
50 Theorem 6 implies Owens [7] theorem. But Theorem
6 also follows from Owens theorem. Let (N, u) be a
linear production game with committee control. For
every kK€ {1,...,m} we consider the game (N, By)
defined by

di dg
B.(S) = 2 BI(S)= 2 B - wi(S).
q=1 q=1
Let zZ be a core element of wf forevery k € {1, ..., m},

g €11, ..., dx}. We deﬁneyk € R” by

di
yre Z
q=1

Bizi¢

Then y* is an element of C(By) for every k € {1, ..., m}.
Let (V, v) be the linear production game where every
i € N has resource vector b = (¥}, ¥#, ..., v/™). Then

bS)=( 2 i, Z ¥i,-

ieS A

> (B1(S), B2(S), ..., B1u(S))

i & V)

ies§

because y"‘c € C(By) for every k€ {l,...,m}. Hence
b(S) = B(S) for every S€2¥ and b(N)=BW). It
follows that o(S) = u(S) for every S € 2V and v(V) =
u(N). Thus we can construct for every linear produc-
tion game with committee control a classical linear
production game such that in both games the value of
the grand coalition is the same and the values of the
other coalitions are not less in the latter than in the
former. From the balancedness of the linear produc-
tion game the balancedness of the linear production
game with committee control follows and we see that
Theorem 6 follows from Owens theorem.

[f all the simple games which describe the controls

are monotonic, i.e., (S)=v(T) if SO T and not bal-
anced then the linear production game with committee
control is not balanced too.
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Theorem 7. Linear production games with committee
control where all the simple games which describe the
controls are monotonic and not balanced, have an empty

COrE.

Proof. Because w{ has no veto players and is monotonic
we have wg(NV\{i})=wg(N) for each i€N. Hence
B(N\{i}) =B(N) for each i€ N which implies that
v(N\{i}) = v(N) for each i €EN. For x to be an element
of C(v) it is required that x(N\{i}) =x(V) for every
i €N, but then x;=0 foreveryi € NVand x(N)=0<<v(N).
So C(v) =0.

In Curiel et al. [1] linear production games with com-
mittee control which are not balanced are studied.
Granot [4] also studies a generalization of linear produc-
tion games. Although the two generalizations look dif-
ferent it can be shown that they are equivalent.

The concept of committee control can also be found
in Dubey and Shapley [2]. The result on the non-
emptiness of the core of a linear production game with
committee control follows also from their result but
contrary to their proof, the proof here is constructive.

I. Curiel et al.: On Balanced Games
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