113 research outputs found

    Morphological characterization of sweet and sour cherry cultivars in a germplasm bank at Portugal

    Get PDF
    Nine sweet cherry and eight sour cherry varieties located in a germplasm bank at Fundauo, Portugal, were studied from the viewpoint of characterization. Most of them were autochthonous cultivars that have a high risk of extinction since at the present they are markedly minor varieties. Morphological characteristics were evaluated in different organs: crown and trunk of the trees, leaves, flowers and fruits, over a three consecutive years period. Statistical analyses were carried out in order to detect similarities between cultivars as well as the existence of synonymies. Qualitative characteristics of the fruits were scored in order to carry out the multivariate analysis. A dendrogram of the evaluated characters shows the marked differentiation between sour and sweet cherries and suggests the existing synonymies. Conservation of the autochthonous cultivars in the future is highly recommended

    Reproductive biology traits affecting productivity of sour cherry

    Get PDF
    The objective of this work was to evaluate variability in reproductive biology traits and the correlation between them in genotypes of 'Oblacinska' sour cherry (Prunus cerasus). High genetic diversity was found in the 41 evaluated genotypes, and significant differences were observed among them for all studied traits: flowering time, pollen germination, number of fruiting branches, production of flower and fruit, number of flowers per bud, fruit set, and limb yield efficiency. The number of fruiting branches significantly influenced the number of flower and fruit, fruit set, and yield efficiency. In addition to number of fruiting branches, yield efficiency was positively correlated with fruit set and production of flower and fruit. Results from principal component analysis suggested a reduction of the reproductive biology factors affecting yield to four main characters: number and structure of fruiting branches, flowering time, and pollen germination. Knowledge of the reproductive biology of the 'Oblacinska' genotypes can be used to select the appropriate ones to be grown or used as parents in breeding programs. In this sense, genotypes II/2, III/9, III/13, and III/14 have very good flower production and satisfactory pollen germination

    Surface Localization of Glucosylceramide during Cryptococcus neoformans Infection Allows Targeting as a Potential Antifungal

    Get PDF
    Cryptococcus neoformans (Cn) is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1) was deleted in Cn, resulting in a strain (Δgcs1) that does not produce glucosylceramide (GlcCer) and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO2). These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz), a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics

    Stress-corrosion mechanisms in silicate glasses

    Full text link
    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.Comment: Invited review article - 34 pages Accepted for publication in J. Phys. D: Appl. Phy

    In vitro nuclear interactome of the HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.</p> <p>Results</p> <p>Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied <it>in silico </it>analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.</p> <p>Conclusion</p> <p>We have completed the <it>in vitro </it>Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.</p

    Time-dependent brittle creep in Darley Dale sandstone

    Get PDF
    The characterization of time-dependent brittle rock deformation is fundamental to understanding the long-term evolution and dynamics of the Earth's crust. The chemical influence of pore water promotes time-dependent deformation through stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Here, we report results from a study of time-dependent brittle creep in water-saturated samples of Darley Dale sandstone (initial porosity, 13%) under triaxial stress conditions. Results from conventional creep experiments show that axial strain rate is heavily dependent on the applied differential stress. A reduction of only 10% in differential stress results in a decrease in strain rate of more than two orders of magnitude. However, natural sample variability means that multiple experiments must be performed to yield consistent results. Hence we also demonstrate that the use of stress-stepping creep experiments can successfully overcome this issue. We have used the stress-stepping technique to investigate the influence of confining pressure at effective confining pressures of 10, 30, and 50 MPa (while maintaining a constant 20 MPa pore fluid pressure). Our results demonstrate that the stress corrosion process appears to be significantly inhibited at higher effective pressures, with the creep strain rate reduced by multiple orders of magnitude. The influence of doubling the pore fluid pressure, however, while maintaining a constant effective confining pressure, is shown to influence the rate of stress corrosion within the range expected from sample variability. We discuss these results in the context of microstructural analysis, acoustic emission hypocenter locations, and fits to proposed macroscopic creep laws

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link
    corecore