103 research outputs found

    The diverse chemistry of protoplanetary disks as revealed by JWST

    Full text link
    Early results from the JWST-MIRI guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here data are presented for five disks, four around low-mass stars and one around a very young high-mass star. The mid-infrared spectra show some similarities but also significant diversity: some sources are rich in CO2, others in H2O or C2H2. In one disk around a very low-mass star, booming C2H2 emission provides evidence for a ``soot'' line at which carbon grains are eroded and sublimated, leading to a rich hydrocarbon chemistry in which even di-acetylene (C4H2) and benzene (C6H6) are detected (Tabone et al. 2023). Together, the data point to an active inner disk gas-phase chemistry that is closely linked to the physical structure (temperature, snowlines, presence of cavities and dust traps) of the entire disk and which may result in varying CO2/H2O abundances and high C/O ratios >1 in some cases. Ultimately, this diversity in disk chemistry will also be reflected in the diversity of the chemical composition of exoplanets.Comment: 17 pages, 8 figures. Author's version of paper submitted to Faraday Discussions January 18 2023, Accepted March 16 202

    Nuclear high-ionisation outflow in the Compton-thick AGN NGC6552 as seen by the JWST mid-infrared instrument

    Get PDF
    During the commissioning of the James Webb Space Telescope (JWST), the mid-infrared instrument (MIRI) observed NGC6552 with the MIRI Imager and the medium-resolution spectrograph (MRS). NGC6552 is an active galactic nucleus (AGN) at redshift 0.0266 classified as a Seyfert 2 nucleus in the optical, and Compton-thick AGN in X-rays. This work exemplifies and demonstrates the MRS capabilities to study the mid-infrared (mid-IR) spectra and characterize the physical conditions and kinematics of the ionized and molecular gas in the nuclear regions of nearby galaxies. We obtained the nuclear, circumnuclear, and central mid-IR spectra of NGC6552. They provide the first clear observational evidence for a nuclear outflow in NGC6552. The outflow contributes to 67±\pm7% of the total line flux independent of the ionization potential (27 to 187 eV) and critical densities (104^4 to 4×\times106^{6} cm−3^{-3}), showing an average blue-shifted peak velocity of -127±\pm45 kms−1^{-1} and an outflow maximal velocity of 698±\pm80 kms−1^{-1}. Since the mid-IR photons penetrate dusty regions as efficiently as X-ray keV photons, we interpret these results as the evidence for a highly ionized, non-stratified, AGN-powered, and fast outflowing gas in a low density environment (few 103^{3} cm−3^{-3}) located very close (<0.2kpc) to the Compton-thick AGN. Nine pure rotational molecular Hydrogen lines are detected and spectrally resolved, and exhibit symmetric Gaussian profiles, consistent with the galactic rotation, and with no evidence of outflowing H2_{2} material. We detect a warm H2_{2} mass of 1.9±1.1×107M⊙1.9\pm1.1\times10^7 M_{\odot} in the central region (1.8 kpc in diameter) of the galaxy, with almost 30% of that mass in the circum-nuclear region. Line ratios confirm that NGC6552 has a Seyfert nucleus with a black hole mass estimated in the range of 0.6 to 6 million solar masses.Comment: 13 pages, 5 figures, 5 tables, accepted in A&

    Observations of the planetary nebula SMP LMC 058 with the JWST MIRI medium resolution spectrometer

    Get PDF
    During the commissioning of JWST, the medium-resolution spectrometer (MRS) on the mid-infrared instrument (MIRI) observed the planetary nebula SMP LMC 058 in the Large Magellanic Cloud. The MRS was designed to provide medium resolution (R = λ/Δλ) 3D spectroscopy in the whole MIRI range. SMP LMC 058 is the only source observed in JWST commissioning that is both spatially and spectrally unresolved by the MRS and is a good test of JWST's capabilities. The new MRS spectra reveal a wealth of emission lines not previously detected in this planetary nebula. From these lines, the spectral resolving power (λ/Δλ) of the MRS is confirmed to be in the range R = 4000-1500, depending on the MRS spectral sub-band. In addition, the spectra confirm that the carbon-rich dust emission is from complex hydrocarbons and SiC grains and that there is little to no time evolution of the SiC dust and emission line strengths over a 17-yr epoch. These commissioning data reveal the great potential of the MIRI MRS for the study of circumstellar and interstellar material.</p

    Water in the terrestrial planet-forming zone of the PDS 70 disk

    Get PDF
    Terrestrial and sub-Neptune planets are expected to form in the inner (<10 <10~AU) regions of protoplanetary disks. Water plays a key role in their formation, although it is yet unclear whether water molecules are formed in-situ or transported from the outer disk. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks, similar to PDS 70, the first system with direct confirmation of protoplanet presence. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (∌54 \sim54~AU) planet-carved gap separating an inner and outer disk. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2_2, and/or OH, and survival through water self-shielding. This is also supported by the presence of CO2_2 emission, another molecule sensitive to UV photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.Comment: To appear in Nature on 24 July 2023. 21 pages, 10 figures; includes extended data. Part of the JWST MINDS Guaranteed Time Observations program's science enabling products. Spectra downloadable on Zenodo at https://zenodo.org/record/799102

    Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension.

    Get PDF
    Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.journal articleresearch support, non-u.s. gov't2014 Oct 152014 08 20importe

    Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells

    Get PDF
    ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum-plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4)P), and act as a PtdIns(4)P/phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5)P 2, and not PtdIns(4)P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum-plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5)P 2 with little effect on PtdIns(4)P. Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4)P can also serve as co-exchangers for the transport of cargo lipids by ORPs.ORP5/8 are endoplasmic reticulum (ER) membrane proteins implicated in lipid trafficking that localize to ER-plasma membrane (PM) contacts and maintain membrane homeostasis. Here the authors show that PtdIns(4,5)P 2 plays a critical role in the targeting and function of ORP5/8 at the PM

    Septin6 and Septin7 GTP binding proteins regulate AP-3- and ESCRT-dependent multivesicular body biogenesis

    Get PDF
    Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies

    Actin Polymerization Controls the Organization of WASH Domains at the Surface of Endosomes

    Get PDF
    Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel colocalization method that is insensitive to the heterogeneity of size and shape of endosomes, we further show that preventing the generation of branched actin networks induces endosomal accumulation of the WASH complex. Moreover, we found that actin depolymerization induces a dramatic decrease in the recovery of endosomal WASH after photobleaching. This result suggests a built-in turnover, where the actin network, i.e. the product of the WASH complex, contributes to the dynamic exchange of the WASH complex by promoting its detachment from endosomes. Our experiments also provide evidence for a role of actin polymerization in the lateral compartmentalization of endosomes: several WASH domains exist at the surface of enlarged endosomes, however, the WASH domains coalesce upon actin depolymerization or Arp2/3 depletion. Branched actin networks are thus involved in the regulation of the size of WASH domains. The potential role of this regulation in membrane scission are discussed
    • 

    corecore