9 research outputs found

    A high-resolution map of transcriptional repression

    Get PDF
    Turning genes on and off is essential for development and homeostasis, yet little is known about the sequence and causal role of chromatin state changes during the repression of active genes. This is surprising, as defective gene silencing underlies developmental abnormalities and disease. Here we delineate the sequence and functional contribution of transcriptional repression mechanisms at high temporal resolution. Inducible entry of the NuRD-interacting transcriptional regulator Ikaros into mouse pre-B cell nuclei triggered immediate binding to target gene promoters. Rapid RNAP2 eviction, transcriptional shutdown, nucleosome invasion, and reduced transcriptional activator binding required chromatin remodeling by NuRD-associated Mi2beta/CHD4, but were independent of HDAC activity. Histone deacetylation occurred after transcriptional repression. Nevertheless, HDAC activity contributed to stable gene silencing. Hence, high resolution mapping of transcriptional repression reveals complex and interdependent mechanisms that underpin rapid transitions between transcriptional states, and elucidates the temporal order, functional role and mechanistic separation of NuRD-associated enzymatic activities.This work was funded by the Medical Research Council UK, Wellcome, and UK-China Scholarships for Excellence (a scheme run jointly by the Department for Business, Innovation and Skills and the China Scholarship Council)

    Identification and characterization of Cardiac Glycosides as senolytic compounds

    Get PDF
    Compounds with specific cytotoxic activity in senescent cells, or senolytics, support the causal involvement of senescence in aging and offer therapeutic interventions. Here we report the identification of Cardiac Glycosides (CGs) as a family of compounds with senolytic activity. CGs, by targeting the Na+/K+ATPase pump, cause a disbalanced electrochemical gradient within the cell causing depolarization and acidification. Senescent cells present a slightly depolarized plasma membrane and higher concentrations of H+, making them more susceptible to the action of CGs. These vulnerabilities can be exploited for therapeutic purposes as evidenced by the in vivo eradication of tumors xenografted in mice after treatment with the combination of a senogenic and a senolytic drug. The senolytic effect of CGs is also effective in the elimination of senescence-induced lung fibrosis. This experimental approach allows the identification of compounds with senolytic activity that could potentially be used to develop effective treatments against age-related diseases.We thank Matthias Drosten, Alejo Efeyan and Sean Morrison for plasmids. F.T-M. is a postdoctoral fellow from CONACYT (cvu 268632); P.P. is a predoctoral fellow from Xunta de Galicia; M.C. is a "Miguel Servet II" investigator (CPII16/00015). P.P.-R. receives support from a program by the Deputacion de Coruna (BINV-CS/2019). Work in the laboratory of M.C. is funded by grant RTI2018-095818-B-100 (MCIU/AEI/FEDER, UE). P.J.F.-M. is funded by the IMDEA Food Institute, the Ramon Areces Foundation, (CIVP18A3891), and a Ramon y Cajal Award (MICINN) (RYC-2017-22335). M.P.I. is funded by Talento Modalidad-1 Program Grant, Madrid Regional Government (#2018-T1/BIO-11262). F.P. was funded by a Long Term EMBO Fellowship (ALTF-358-2017) and F.H-G. was funded by the PhD4MD Programme of the IRB, Hospital Clinic and IDIBAPS. Work in the laboratory of M.S. was funded by the IRB and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (ERDF) (SAF2013-48256-R), the European Research Council (ERC-2014-AdG/669622), and "laCaixa" Foundation.S

    Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation

    Get PDF
    The differentiation of self-renewingprogenitor cells requires not only the regulation of lineage-and developmental stage-specific genes, but also the coordinated adaptation of housekeeping functionsfrom a metabolically active, proliferative state towards quiescence. How metabolic and cell cycle states are coordinated with the regulation of cell type-specific genes is an important question, as dissociation between differentiation, cell cycle, and metabolic states is a hallmark of cancer. Here we use a model system to systematically identify key transcriptional regulators of Ikaros-dependent B cell progenitor differentiation. We find that the coordinated regulation of housekeeping functions and tissue-specific gene expressionrequires afeedforward circuit whereby Ikarosdownregulates the expression of Myc. Our findings show how coordination between differentiation and housekeeping statescan be achieved by interconnected regulators. Similar principles likely coordinate differentiation and housekeeping functions during progenitor cell differentiation in other cell lineages

    Lymphocyte Activation Dynamics Is Shaped by Hereditary Components at Chromosome Region 17q12-q21

    Get PDF
    Single nucleotide polymorphisms (SNPs) located in the chromosome region 17q12-q21 are risk factors for asthma. Particularly, there are cis-regulatory haplotypes within this region that regulate differentially the expression levels of ORMDL3, GSDMB and ZPBP2 genes. Remarkably, ORMDL3 has been shown to modulate lymphocyte activation parameters in a heterologous expression system. In this context, it has been shown that Th2 and Th17 cytokine production is affected by SNPs in this region. Therefore, we aim to assess the impact of hereditary components within region 17q12-q21 on the activation profile of human T lymphocytes, focusing on the haplotype formed by allelic variants of SNPs rs7216389 and rs12936231. We measured calcium influx and activation markers, as well as the proliferation rate upon T cell activation. Haplotype-dependent differences in mRNA expression levels of IL-2 and INF-γ were observed at early times after activation. In addition, the allelic variants of these SNPs impacted on the extent of calcium influx in resting lymphocytes and altered proliferation rates in a dose dependent manner. As a result, the asthma risk haplotype carriers showed a lower threshold of saturation during activation. Finally, we confirmed differences in activation marker expression by flow cytometry using phytohemagglutinin, a strong polyclonal stimulus. Altogether, our data suggest that the genetic component of pro-inflammatory pathologies present in this chromosome region could be explained by different T lymphocyte activation dynamics depending on individual allelic heredity.This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2010-16725, SAF2013-46077-R, SAF2014-52228-R, BES-2011-043839), Fondo de Investigación Sanitaria (Red HERACLES RD12/0042/0014), Fundació la Marató de TV3 (20134030) and Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 3150113). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Stage-specific control of early B cell development by the transcription factor Ikaros

    No full text
    The transcription factor Ikaros is an essential regulator of lymphopoiesis. Here we studied its B cell-specific function by conditional inactivation of the gene encoding Ikaros (Ikzf1) in pro-B cells. B cell development was arrested at an aberrant 'pro-B cell' stage characterized by increased cell adhesion and loss of signaling via the pre-B cell signaling complex (pre-BCR). Ikaros activated genes encoding signal transducers of the pre-BCR and repressed genes involved in the downregulation of pre-BCR signaling and upregulation of the integrin signaling pathway. Unexpectedly, derepression of expression of the transcription factor Aiolos did not compensate for the loss of Ikaros in pro-B cells. Ikaros induced or suppressed active chromatin at regulatory elements of activated or repressed target genes. Notably, binding of Ikaros and expression of its target genes were dynamically regulated at distinct stages of early B lymphopoiesis
    corecore