721 research outputs found

    The higher the pitch the larger its crossmodal influence on visuospatial processing

    Full text link
    High-pitched sounds generate larger neural responses than low-pitched sounds. We investigated whether this neural difference has implications, at cognitive level, for the 'vertical' representation of pitch. Participants performed a speeded detection of visual targets that could appear at one of four different spatial positions. Rising or falling frequency sweeps were randomly presented before the visual target. Faster reaction times to visual targets appearing above (but not below) a central fixation point were observed after the presentation of rising frequencies. No significant effects were found for falling frequency sweeps and visual targets presented below fixation point. These results suggest that the difference in the level of arousal between rising and falling frequencies influences their capacity for generating spatial representations. The fact that no difference was found, in terms of crossmodal effects, between the two upper positions may indicate that this 'spatial representation of pitch' is not specific for any particular spatial location but rather has a widespread influence over stimuli appearing in the upper visual field. The present findings are relevant for the study of music performance, the design of musical instruments, and research in areas where visual and auditory stimuli with certain complexity are combined (music in advertisements, movies, etc.)

    Entrevista con Francisco-Félix Montiel

    Get PDF

    Modifying the magnetic response of magnetotactic bacteria: incorporation of Gd and Tb ions into the magnetosome structure

    Get PDF
    Magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1 biosynthesise chains of cube–octahedral magnetosomes, which are 40 nm magnetite high quality (Fe3O4) nanoparticles. The magnetic properties of these crystalline magnetite nanoparticles, which can be modified by the addition of other elements into the magnetosome structure (doping), are of prime interest in a plethora of applications, those related to cancer therapy being some of the most promising ones. Although previous studies have focused on transition metal elements, rare earth (RE) elements are very interesting as doping agents, both from a fundamental point of view (e.g. significant differences in ionic sizes) and for the potential applications, especially in biomedicine (e.g. magnetic resonance imaging and luminescence). In this work, we have investigated the impact of Gd and Tb on the magnetic properties of magnetosomes by using different complementary techniques. X-ray diffraction, transmission electron microscopy, and X-ray absorption near edge spectroscopy analyses have revealed that a small amount of RE ions, ∼3–4%, incorporate into the Fe3O4 structure as Gd3+ and Tb3+ ions. The experimental magnetic characterisation has shown a clear Verwey transition for the RE-doped bacteria, located at T ∼ 100 K, which is slightly below the one corresponding to the undoped ones (106 K). However, we report a decrease in the coercivity and remanence of the RE-doped bacteria. Simulations based on the Stoner–Wohlfarth model have allowed us to associate these changes in the magnetic response with a reduction of the magnetocrystalline (KC) and, especially, the uniaxial (Kuni) anisotropies below the Verwey transition. In this way, Kuni reaches a value of 23 and 26 kJ m−3 for the Gd- and Tb-doped bacteria, respectively, whilst a value of 37 kJ m−3 is obtained for the undoped bacteria.This work was supported in part by the Spanish MCIN/AEI under Projects MAT2017-83631-C3-R and PID2020-115704RB-C33. The work of Elizabeth M. Jefremovas was supported by the “Concepción Arenal Grant” awarded by Gobierno de Cantabria and Universidad de Cantabria. The work of Lourdes Marcano was supported by the Postdoctoral Fellowship from the Basque Government under Grant POS-2019-2-0017. The authors would like to thank “Nanotechnology in translational hyperthermia” (HIPERNANO)-RED2018-102626-T. We thank the ALBA (CLAESS beamline) synchrotron radiation facilities and staff for the allocation of beamtime and assistance during the experiments

    Innate Immune Receptors, Key Actors in Cardiovascular Diseases

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of death in the industrialized world. Most CVDs are associated with increased inflammation that arises mainly from innate immune system activation related to cardiac damage. Sustained activation of the innate immune system frequently results in maladaptive inflam- matory responses that promote cardiovascular dysfunction and remodeling. Much research has focused on determining whether some mediators of the innate immune system are potential targets for CVD therapy. The innate immune system has specific receptors—termed pattern recognition receptors (PRRs)—that not only recognize pathogen-associated molecular patterns, but also sense danger-associated molecular signals. Acti- vation of PRRs triggers the inflammatory response in different physiological systems, including the cardio- vascular system. The classic PRRs, toll-like receptors (TLRs), and the more recently discovered nucleotide- binding oligomerization domain-like receptors (NLRs), have been recently proposed as key partners in the progression of several CVDs (e.g., atherosclerosis and heart failure). The present review discusses the key findings related to the involvement of TLRs and NLRs in the progression of several vascular and cardiac diseases, with a focus on whether some NLR subtypes (nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing receptor 3 and nucleotide-binding oligomerization domain-containing protein 1) can be candidates for the development of new therapeutic strategies for several CVDs

    Innate immune receptors, key actors in cardiovascular diseases

    Full text link
    Cardiovascular diseases (CVDs) are the leading cause of death in the industrialized world. Most CVDs are associated with increased inflammation that arises mainly from innate immune system activation related to cardiac damage. Sustained activation of the innate immune system frequently results in maladaptive inflammatory responses that promote cardiovascular dysfunction and remodeling. Much research has focused on determining whether some mediators of the innate immune system are potential targets for CVD therapy. The innate immune system has specific receptors—termed pattern recognition receptors (PRRs)—that not only recognize pathogen-associated molecular patterns, but also sense danger-associated molecular signals. Activation of PRRs triggers the inflammatory response in different physiological systems, including the cardiovascular system. The classic PRRs, toll-like receptors (TLRs), and the more recently discovered nucleotide-binding oligomerization domain-like receptors (NLRs), have been recently proposed as key partners in the progression of several CVDs (e.g., atherosclerosis and heart failure). The present review discusses the key findings related to the involvement of TLRs and NLRs in the progression of several vascular and cardiac diseases, with a focus on whether some NLR subtypes (nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing receptor 3 and nucleotide-binding oligomerization domain-containing protein 1) can be candidates for the development of new therapeutic strategies for several CVDs

    Mejora de la predicción de la resistencia y rigidez de la madera estructural con el método de ultrasonidos combinado con parámetros de clasificación visual

    Get PDF
    The present study explores the possibility of using longitudinal ultrasound transmission to evaluate the bending strength and modulus of elasticity in structural timber made from the two species most commonly found in Spanish construction and rehabilitation works: Scots pine (Pinus sylvestris L.) and Laricio pine (Pinus nigra Arn.). An analysis of 1305 Scots pine and 852 Laricio pine beams shows that ultrasound transmission velocity alone can predict neither the bending strength nor the modulus of elasticity and that other predictive variables are required.A series of models are proposed based on ultrasound transmission velocity measurements, the relative size of the largest face and edge knots, length and density. After running models for each species individually and for the two jointly, a single model is found to be suitable for both. The models proposed explain from 63 to 73 per cent of bending strength and modulus of elasticity variability.Se analiza la posibilidad de aplicar la técnica de transmisión longitudinal de ultrasonidos para la evaluación de la resistencia y módulo de elasticidad a flexión de la madera estructural de las dos especies de mayor interés constructivo y más amplia presencia en obras de rehabilitación: el pino silvestre (Pinus sylvestris L.) y el pino laricio (Pinus nigra Arn.). Trabajando sobre un total de 1.305 vigas de pino silvestre y 852 de pino laricio se concluye que por sí sola la velocidad de transmisión de ultrasonidos no es un buen predictor ni de la resistencia ni del módulo de elasticidad en flexión, necesitando el complemento de otras variables predictoras. Se proponen diversos modelos basados en la medición de la velocidad de transmisión de ultrasonidos, de los diámetros relativos del nudo máximo de cara y de canto, de la longitud y de la densidad. Los modelos se proponen tanto a nivel especie como global, comprobándose que es posible emplear un modelo único para ambas especies. Los modelos propuestos son capaces de explicar entre el 63 y el 73% de la variabilidad de la resistencia y módulo de elasticidad a flexión

    Archivo sobre cardiopatías congénitas. Grupo GECAR-AVEPA

    Get PDF
    En este artículo se presentan los objetivos y las pautas para la elaboración de un archivo sobre cardiopatías congénitas en pequeños animales a nivel nacional, elaborados por una comisión de miembros del Grupo de Especialistas en Cardiorrespiratorio (GECAR) de AVEPA.

    Chemical imaging of phase separated polymer blends by fluorescence microscopy

    Get PDF
    Blends of poly(vinylacetate) (PVAc) and poly(cyclohexylmethacrylate) (PCHMA) labeled by copolymerization with 4-methacryloylamine-48-nitrostilbene (Sb), with (1-pyrenylmethyl)methacrylate (Py), or with 3-(methacryloylamine)propyl-N-carbazole (Cbz) were prepared by casting dilute solutions in tetrahydrofurane (THF) or chloroform. Films about 10 mm thick were formed. Phase separation in two types of domains is observed by transmission optical microscopy (TOM) and epifluorescence microscopy (EFM): small craters of 1 to 10 mm placed at the polymer–air interface and larger domains, on the scale of 100 mm. The morphology of samples depends on the composition of the polymer blend and on solvent. The green fluorescence of Sb, the violet of Py, or the blue of Cbz provides imaging of the distribution of PCHMA in the different domains and in the matrix. It is thus observed that (i) superficial craters and large domains are formed mainly by PCHMA and (ii) the matrix is composed of PVAc in films cast from THF and it is a blend of the two polymers, homogeneous at the submicrometric scale, for chloroform. The emission intensity of Py, recorded by microfluorescence spectroscopy (MFS), yields a mapping similar to imaging detection. It is remarkable that in films cast from chloroform, the smaller domains are distributed with a 2D hexatic order disrupted by dislocations and disclinations, whereas in films cast from THF, a larger heterogeneity is found, denoting different mechanisms of solvent evaporation.This work was supported by CICYT (Spain) and Brite-Euran (EU) under Grants PB95-0247 and BE-97-4672, respectively

    Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) β-d-xylopyranoside synthesis catalyzed by the recombinant β-xylosidase BxTW1 from Talaromyces amestolkiae

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License.-- et al.[Background]: Glycosides are compounds displaying crucial biological roles and plenty of applications. Traditionally, these molecules have been chemically obtained, but its efficient production is limited by the lack of regio- and stereo-selectivity of the chemical synthesis. As an interesting alternative, glycosidases are able to catalyze the formation of glycosides in a process considered green and highly selective. In this study, we report the expression and characterization of a fungal ß-xylosidase in Pichia pastoris. The transglycosylation potential of the enzyme was evaluated and its applicability in the synthesis of a selective anti-proliferative compound demonstrated. [Results]: The ß-xylosidase BxTW1 from the ascomycete fungus Talaromyces amestolkiae was cloned and expressed in Pichia pastoris GS115. The yeast secreted 8 U/mL of ß-xylosidase that was purified by a single step of cation-exchange chromatography. rBxTW1 in its active form is an N-glycosylated dimer of about 200 kDa. The enzyme was biochemically characterized displaying a K m and k cat against p-nitrophenyl-ß-d-xylopyranoside of 0.20 mM and 69.3 s¿1 respectively, and its maximal activity was achieved at pH 3 and 60 °C. The glycan component of rBxTW1 was also analyzed in order to interpret the observed loss of stability and maximum velocity when compared with the native enzyme. A rapid screening of aglycone specificity was performed, revealing a remarkable high number of potential transxylosylation acceptors for rBxTW1. Based on this analysis, the enzyme was successfully tested in the synthesis of 2-(6-hydroxynaphthyl) ß-d-xylopyranoside, a well-known selective anti-proliferative compound, enzymatically obtained for the first time. The application of response surface methodology, following a Box-Behnken design, enhanced this production by eightfold, fitting the reaction conditions into a multiparametric model. The naphthyl derivative was purified and its identity confirmed by NMR. [Conclusions]: A ß-xylosidase from T. amestolkiae was produced in P. pastoris and purified. The final yields were much higher than those attained for the native protein, although some loss of stability and maximum velocity was observed. rBxTW1 displayed remarkable acceptor versatility in transxylosylation, catalyzing the synthesis of a selective antiproliferative compound, 2-(6-hydroxynaphthyl) ß-d-xylopyranoside. These results evidence the interest of rBxTW1 for transxylosylation of relevant products with biotechnological interest.This work was carried out with funding from projects BIO2015-68387-R, RTC-2014-1777-3 and CTQ2015-64597-C2 from MINECO and S2013/MAE2972 from Comunidad de Madrid, as well as from the Natural Sciences and Engineering Research Council of Canada. M. Nieto-Domínguez thanks the MINECO for an FPU fellowship.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer Reviewe
    corecore