111 research outputs found

    Radiative emission of solar features in Ca II K

    Full text link
    We investigated the radiative emission of different types of solar features in the spectral range of the Ca II K line. We analyzed full-disk 2k x 2k observations from the PSPT Precision Solar Photometric Telescope. The data were obtained by using three narrow-band interference filters that sample the Ca II K line with different pass bands. Two filters are centered in the line core, the other in the red wing of the line. We measured the intensity and contrast of various solar features, specifically quiet Sun (inter-network), network, enhanced network, plage, and bright plage (facula) regions. Moreover, we compared the results obtained with those derived from the numerical synthesis performed for the three PSPT filters with a widely used radiative code on a set of reference semi-empirical atmosphere models.Comment: In Proceedings of the 25th NSO Workshop: Chromospheric Structure and Dynamic

    Radiative emission of solar features in the Ca II K line: comparison of measurements and models

    Full text link
    We study the radiative emission of various types of solar features, such as quiet Sun, enhanced network, plage, and bright plage regions, identified on filtergrams taken in the Ca II K line. We analysed fulldisk images obtained with the PSPT, by using three interference filters that sample the Ca II K line with different bandpasses. We studied the dependence of the radiative emission of disk features on the filter bandpass. We also performed a NLTE spectral synthesis of the Ca II K line integrated over the bandpass of PSPT filters. The synthesis was carried out by utilizing both the PRD and CRD with the most recent set of semi empirical atmosphere models in the literature and some earlier atmosphere models. We measured the CLV of intensity values for various solar features identified on PSPT images and compared the results obtained with those derived from the synthesis. We find that CRD calculations derived using the most recent quiet Sun model, on average, reproduce the measured values of the quiet Sun regions slightly more accurately than PRD computations with the same model. This may reflect that the utilized atmospheric model was computed assuming CRD. Calculations with PRD on earlier quiet Sun model atmospheres reproduce measured quantities with a similar accuracy as to that achieved here by applying CRD to the recent model. We also find that the median contrast values measured for most of the identified bright features, disk positions, and filter widths are, on average, a factor 1.9 lower than those derived from PRD simulations performed using the recent bright feature models. The discrepancy between measured and modeled values decreases by 12% after taking into account straylight effects on PSPT images. PRD computations on either the most recent or the earlier atmosphere models of bright features reproduce measurements from plage and bright plage regions with a similar accuracy.Comment: 14 pages, 18 figures, accepted by A&

    Kinematics and Magnetic Properties of a Light Bridge in a Decaying Sunspot

    Get PDF
    We present the results obtained by analyzing high spatial and spectral resolution data of the solar photosphere acquired by the CRisp Imaging SpectroPolarimeter at the Swedish Solar Telescope on 6 August 2011, relevant to a large sunspot with a light bridge (LB) observed in NOAA AR 11263. These data are complemented by simultaneous Hinode Spectropolarimeter (SP) observation in the Fe I 630.15 nm and 630.25 nm lines. The continuum intensity map shows a discontinuity of the radial distribution of the penumbral filaments in correspondence with the LB, which shows a dark lane (about 0.3" wide and about 8.0" long) along its main axis. The available data were inverted with the Stokes Inversion based on Response functions (SIR) code and physical parameters maps were obtained. The line-of-sight (LOS) velocity of the plasma along the LB derived from the Doppler effect shows motions towards and away from the observer up to 0.6 km/s, which are lower in value than the LOS velocities observed in the neighbouring penumbral filaments. The noteworthy result is that we find motions toward the observer up to 0.6 km/s in the dark lane where the LB is located between two umbral cores, while the LOS velocity motion toward the observer is strongly reduced where the LB is located between an umbral core at one side and penumbral filaments on the other side. Statistically, the LOS velocities correspond to upflows/downflows andcomparing these results with Hinode/SP data, we conclude that the surrounding magnetic field configuration (whether more or less inclined) could have a role in maintaining the conditions for the process of plasma piling up along the dark lane. The results obtained from our study support and confirm outcomes of recent magnetohydro-dynamic simulations showing upflows along the main axis of a LBs

    Polarised kink waves in magnetic elements: evidence for chromospheric helical waves

    Get PDF
    In recent years, new high spatial resolution observations of the Sun's atmosphere have revealed the presence of a plethora of small-scale magnetic elements down to the resolution limit of the current cohort of solar telescopes (~100–120 km on the solar photosphere). These small magnetic field concentrations, due to the granular buffeting, can support and guide several magnetohydrodynamic wave modes that would eventually contribute to the energy budget of the upper layers of the atmosphere. In this work, exploiting the high spatial and temporal resolution chromospheric data acquired with the Swedish 1 m Solar Telescope, and applying the empirical mode decomposition technique to the tracking of the solar magnetic features, we analyze the perturbations of the horizontal velocity vector of a set of chromospheric magnetic elements. We find observational evidence that suggests a phase relation between the two components of the velocity vector itself, resulting in its helical motion

    Experimental evaluation of the thermal polarization in direct contact membrane distillation using electrospun nanofiber membranes doped with molecular probes

    Get PDF
    Membrane distillation (MD) has recently gained considerable attention as a valid process for the production of fresh-water due to its ability to exploit low grade waste heat for operation and to ensure a nearly feed concentration-independent production of high-purity distillate. Limitations have been related to polarization phenomena negatively affecting the thermal efficiency of the process and, as a consequence, its productivity. Several theoretical models have been developed to predict the impact of the operating conditions of the process on the thermal polarization, but there is a lack of experimental validation. In this study, electrospun nanofiber membranes (ENMs) made of Poly(vinylidene fluoride) (PVDF) and doped with (1, 10-phenanthroline) ruthenium (II) Ru(phen) 3 were tested at different operating conditions (i.e., temperature and velocity of the feed) in direct contact membrane distillation (DCMD). The temperature sensitive luminophore, Ru(phen) 3 , allowed the on-line and non-invasive mapping of the temperature at the membrane surface during the process and the experimental evaluation of the effect of the temperature and velocity of the feed on the thermal polarization

    Stray-light restoration of full-disk CaII K solar observations: a case study

    Full text link
    AIMS: We investigate whether restoration techniques, such as those developed for application to current observations, can be used to remove stray-light degradation effects on archive CaII K full-disk observations. We analyze to what extent these techniques can recover homogeneous time series of data. METHODS:We develop a restoration algorithm based on a method presented by Walton & Preminger (1999). We apply this algorithm to data for both present-day and archive CaII K full-disk observations, which were acquired using the PSPT mounted at the Rome Observatory, or obtained by digitization of Mt Wilson photographic-archive spectroheliograms. RESULTS:We show that the restoring algorithm improves both spatial resolution and photometric contrast of the analyzed solar observations. We find that the improvement in spatial resolution is similar for analyzed recent and archive data. On the other hand, the improvement of photometric contrast is quite poor for the archive data, with respect to the one obtained for the present-day images. We show that the quality of restored archive data depends on the photographic calibration applied to the original observations. In particular, photometry can be recovered with a restoring algorithm if the photographic-calibration preserves the intensity information stored in the original data, principally outside the solar-disk observations.Comment: 10 pages; 9 figure

    Dynamic properties along the neutral line of a delta spot inferred from high-resolution observations

    Get PDF
    Delta (δ) spots are complex magnetic configurations of sunspots characterized by umbrae of opposite polarity sharing a common penumbra. In order to investigate the fine structure of the region separating the two magnetic polarities of a δ spot, we studied the morphology, the magnetic configuration, and the velocity field in such a region using observations of active region (AR) NOAA 11267 obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish Solar Telescope on 2011 August 6. The analysis of CRISP data shows upflows and downflows of ~ ± 3 km s–1 in proximity of the δ spot polarity inversion line (PIL), and horizontal motions along the PIL of the order of ~1 km s–1. The results obtained from the SIR inversion of CRISP data also indicate that the transverse magnetic field in the brighter region separating the two opposite magnetic polarities of the δ spot is tilted about ~45° with respect to the PIL. Solar Dynamics Observatory/Helioseismic and Magnetic Imager observations confirm the presence of motions of ~ ± 3 km s–1 in proximity of the PIL, which were observed to last 15 hr. From the data analyzed, we conclude that the steady, persistent, and subsonic motions observed along the δ spot PIL can be interpreted as being due to Evershed flows occurring in the penumbral filaments that show a curved, wrapped configuration. The fluting of the penumbral filaments and their bending, continuously increased by the approaching motion of the negative umbra toward the positive one, give rise to the complex line-of-sight velocity maps that we observed. © 2014. The American Astronomical Society. All rights reserved
    • …
    corecore