25 research outputs found

    Ressenyes

    Get PDF
    Obres ressenyades: Joan BADA; Emilio LA PARRA, Ernest LLUCH; Josep Maria MARQUÈS ; Joaquim Maria PUIGVERT; Joaquim Maria PUIGVERT (ed.), Bisbes, Il·lustració i jansenisme a la Catalunya del segle XVIII. Vic/Girona, Eumo editorial, 2000 ; Montserrat JIMÉNEZ SUREDA, L'Església catalana sota la monarquia dels Borbons. La Catedral de Girona al segle XVIII. Barcelona: Publicacions de l'Abadia de Montserrat/Ajuntament de Girona, 1998

    Analysis of metabolic dynamics during drought stress in Arabidopsis plants

    Get PDF
    Altres ajuts: we acknowledge support from the CERCA Programme/Generalitat de CatalunyaDrought is a major cause of agricultural losses worldwide. Climate change will intensify drought episodes threatening agricultural sustainability. Gaining insights into drought response mechanisms is vital for crop adaptation to climate emergency. To date, only few studies report comprehensive analyses of plant metabolic adaptation to drought. Here, we present a multifactorial metabolomic study of early-mid drought stages in the model plant Arabidopsis thaliana. We sampled root and shoot tissues of plants subjected to water withholding over a six-day time course, including brassinosteroids receptor mutants previously reported to show drought tolerance phenotypes. Furthermore, we sequenced the root transcriptome at basal and after 5 days drought, allowing direct correlation between metabolic and transcriptomic changes and the multi-omics integration. Significant abiotic stress signatures were already activated at basal conditions in a vascular-specific receptor overexpression (BRL3ox). These were also rapidly mobilized under drought, revealing a systemic adaptation strategy driven from inner tissues of the plant. Overall, this dataset provides a significant asset to study drought metabolic adaptation and allows its analysis from multiple perspective

    Isotopic labelling reveals the efficient adaptation of wheat root TCA cycle flux modes to match carbon demand under ammonium nutrition

    Get PDF
    Proper carbon (C) supply is essential for nitrogen (N) assimilation especially when plants are grown under ammonium (NH4+) nutrition. However, how C and N metabolic fluxes adapt to achieve so remains uncertain. In this work, roots of wheat (Triticum aestivum L.) plants grown under exclusive NH4+ or nitrate (NO3−) supply were incubated with isotope-labelled substrates (15NH4+, 15NO3−, or [13C]Pyruvate) to follow the incorporation of 15N or 13C into amino acids and organic acids. Roots of plants adapted to ammonium nutrition presented higher capacity to incorporate both 15NH4+ and 15NO3− into amino acids, thanks to the previous induction of the NH4+ assimilative machinery. The 15N label was firstly incorporated into [15N]Gln vía glutamine synthetase; ultimately leading to [15N]Asn accumulation as an optimal NH4+ storage. The provision of [13C]Pyruvate led to [13C]Citrate and [13C]Malate accumulation and to rapid [13C]2-OG consumption for amino acid synthesis and highlighted the importance of the anaplerotic routes associated to tricarboxylic acid (TCA) cycle. Taken together, our results indicate that root adaptation to ammonium nutrition allowed efficient assimilation of N thanks to the promotion of TCA cycle open flux modes in order to sustain C skeleton availability for effective NH4+ detoxification into amino acids

    New insights on arabidopsis thaliana root adaption to ammonium nutrition by the use of a quantitative proteomic approach

    Get PDF
    Nitrogen is an essential element for plant nutrition. Nitrate and ammonium are the two major inorganic nitrogen forms available for plant growth. Plant preference for one or the other form depends on the interplay between plant genetic background and environmental variables. Ammonium-based fertilization has been shown less environmentally harmful compared to nitrate fertilization, because of reducing, among others, nitrate leaching and nitrous oxide emissions. However, ammonium nutrition may become a stressful situation for a wide range of plant species when the ion is present at high concentrations. Although studied for long time, there is still an important lack of knowledge to explain plant tolerance or sensitivity towards ammonium nutrition. In this context, we performed a comparative proteomic study in roots of Arabidopsis thaliana plants grown under exclusive ammonium or nitrate supply. We identified and quantified 68 proteins with differential abundance between both conditions. These proteins revealed new potential important players on root response to ammonium nutrition, such as H+ -consuming metabolic pathways to regulate pH homeostasis and specific secondary metabolic pathways like brassinosteroid and glucosinolate biosynthetic pathways

    Ressenyes

    No full text
    Obres ressenyades: Joan BADA; Emilio LA PARRA, Ernest LLUCH; Josep Maria MARQUÈS ; Joaquim Maria PUIGVERT; Joaquim Maria PUIGVERT (ed.), Bisbes, Il·lustració i jansenisme a la Catalunya del segle XVIII. Vic/Girona, Eumo editorial, 2000 ; Montserrat JIMÉNEZ SUREDA, L'Església catalana sota la monarquia dels Borbons. La Catedral de Girona al segle XVIII. Barcelona: Publicacions de l'Abadia de Montserrat/Ajuntament de Girona, 1998
    corecore