21 research outputs found

    Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine

    Get PDF
    Selenoproteins are a unique group of proteins that contain selenium in the form of selenocysteine (Sec) co-translationally inserted in response to a UGA codon with the help of cis- and trans-acting factors. Mammalian selenoproteins contain single Sec residues, with the exception of selenoprotein P (SelP) that has 7–15 Sec residues depending on species. Assessing an individual’s selenium status is important under various pathological conditions, which requires a reliable selenium biomarker. Due to a key role in organismal selenium homeostasis, high Sec content, regulation by dietary selenium, and availability of robust assays in human plasma, SelP has emerged as a major biomarker of selenium status. Here, we found that Cys is present in various Sec positions in human SelP. Treatment of cells expressing SelP with thiophosphate, an analog of the selenium donor for Sec synthesis, led to a nearly complete replacement of Sec with Cys, whereas supplementation of cells with selenium supported Sec insertion. SelP isolated directly from human plasma had up to 8% Cys inserted in place of Sec, depending on the Sec position. These findings suggest that a change in selenium status may be reflected in both SelP concentration and its Sec content, and that availability of the SelP-derived selenium for selenoprotein synthesis may be overestimated under conditions of low selenium status due to replacement of Sec with Cys

    Aminoglycoside-driven biosynthesis of selenium-deficient Selenoprotein P

    Get PDF
    Selenoprotein biosynthesis relies on the co-translational insertion of selenocysteine in response to UGA codons. Aminoglycoside antibiotics interfere with ribosomal function and may cause codon misreading. We hypothesized that biosynthesis of the selenium (Se) transporter selenoprotein P (SELENOP) is particularly sensitive to antibiotics due to its ten in frame UGA codons. As liver regulates Se metabolism, we tested the aminoglycosides G418 and gentamicin in hepatoma cell lines (HepG2, Hep3B and Hepa1-6) and in experimental mice. In vitro, SELENOP levels increased strongly in response to G418, whereas expression of the glutathione peroxidases GPX1 and GPX2 was marginally affected. Se content of G418-induced SELENOP was dependent on Se availability, and was completely suppressed by G418 under Se-poor conditions. Selenocysteine residues were replaced mainly by cysteine, tryptophan and arginine in a codon-specific manner. Interestingly, in young healthy mice, antibiotic treatment failed to affect Selenop biosynthesis to a detectable degree. These findings suggest that the interfering activity of aminoglycosides on selenoprotein biosynthesis can be severe, but depend on the Se status, and other parameters likely including age and general health. Focused analyses with aminoglycoside-treated patients are needed next to evaluate a possible interference of selenoprotein biosynthesis by the antibiotics and elucidate potential side effects

    Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P

    Get PDF
    Selenoprotein P (SELENOP) is a liver-derived transporter of selenium (Se) in blood, and a meaningful biomarker of Se status. Se is an essential trace element for the biosynthesis of enzymatically-active selenoproteins, protecting the organism from oxidative damage. The usage of uncalibrated assays hinders the comparability of SELENOP concentrations and their pathophysiological interpretation across different clinical studies. On this account, we established a new sandwich SELENOP-ELISA and calibrated against a standard reference material (SRM1950). The ELISA displays a wide working range (11.6–538.4 µg/L), high accuracy (2.9%) and good precision (9.3%). To verify whether SELENOP correlates to total Se and to SELENOP-bound Se, serum samples from healthy subjects and age-selected participants from the Berlin Aging Study II were analyzed by SELENOP-ELISA and Se quantification. SELENOP was affinity-purified and its Se content was determined from a subset of samples. There was a high correlation of total Se and SELENOP concentrations in young and elderly men, and in elderly women, but not in young women, indicating a specific sexual dimorphism in these biomarkers of Se status in young subjects. The Se content of isolated SELENOP was independent of sex and age (mean±SD: 5.4±0.5). By using this calibrated SELENOP-ELISA, prior reports on pathological SELENOP concentrations in diabetes and obesity are challenged as the reported values are outside reasonable limits. Biomarkers of Se status in clinical research need to be measured by validated assays in order to avoid erroneous data and incorrect interpretations, especially when analyzing young women. The Se content of circulating SELENOP differs between individuals and may provide some important diagnostic information on Se metabolism and status

    Association of selenoprotein and selenium pathway gnotypes with risk of colorectal cancer and interaction with selenium status

    Get PDF
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development

    Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status

    Get PDF
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (P-ACT = 0.10; P-ACT significance threshold was P <0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development.Peer reviewe

    Hypoxia reduces and redirects selenoprotein biosynthesis

    Get PDF
    Selenium deficiency constitutes a risk factor for the incidence and negative course of severe diseases including sepsis, stroke, autoimmune diseases or cancer. In this study, hypoxia is identified as a powerful stimulus to redirect selenoprotein biosynthesis causing reduced selenoprotein P expression and diminished selenium export from hepatocytes in favour of increased biosynthesis of the essential protective intracellular phospholipid hydroperoxide glutathione peroxidase GPX4. Specifically, hypoxia decreases transcript concentrations of central factors controlling selenium and selenocysteine metabolism including selenophosphate synthetase-2, phosphoseryl-tRNASerSec kinase and selenocysteine lyase, which are all proven to be rate-limiting enzymes in selenoprotein biosynthesis. These effects are paralleled by a general decline of selenoprotein expression; however, not all selenoproteins are affected to the same extent by hypoxia, and GPX4 constitutes an exception as its expression becomes slightly increased. Supplemental selenium is able to overcome the hypoxia-dependent down regulation of selenoprotein expression in our cell culture model system, supporting the concept of using selenium as an adjuvant treatment option in severe diseases. Although it remains to be tested whether these effects constitute a hepatocyte-specific response, the selenium-dependent decline of selenoprotein P biosynthesis under hypoxic conditions may explain the progressive selenium deficit developing in severe diseases.Peer Reviewe

    Hypoxia reduces and redirects selenoprotein biosynthesis

    Get PDF
    Selenium deficiency constitutes a risk factor for the incidence and negative course of severe diseases including sepsis, stroke, autoimmune diseases or cancer. In this study, hypoxia is identified as a powerful stimulus to redirect selenoprotein biosynthesis causing reduced selenoprotein P expression and diminished selenium export from hepatocytes in favour of increased biosynthesis of the essential protective intracellular phospholipid hydroperoxide glutathione peroxidase GPX4. Specifically, hypoxia decreases transcript concentrations of central factors controlling selenium and selenocysteine metabolism including selenophosphate synthetase-2, phosphoseryl-tRNASerSec kinase and selenocysteine lyase, which are all proven to be rate-limiting enzymes in selenoprotein biosynthesis. These effects are paralleled by a general decline of selenoprotein expression; however, not all selenoproteins are affected to the same extent by hypoxia, and GPX4 constitutes an exception as its expression becomes slightly increased. Supplemental selenium is able to overcome the hypoxia-dependent down regulation of selenoprotein expression in our cell culture model system, supporting the concept of using selenium as an adjuvant treatment option in severe diseases. Although it remains to be tested whether these effects constitute a hepatocyte-specific response, the selenium-dependent decline of selenoprotein P biosynthesis under hypoxic conditions may explain the progressive selenium deficit developing in severe diseases.Peer Reviewe

    Sex-specific associations of serum selenium and selenoprotein P with type 2 diabetes mellitus and hypertension in the Berlin Aging Study II

    No full text
    Background: Selenium is essential for expression and proper function of a set of redox active selenoproteins implicated in aging-relevant diseases, e.g. type 2 diabetes mellitus (T2D) and hypertension. However, data in cohorts of older adults, particularly with respect to different Se biomarkers and sex-specific analyses are sparse. Objective: To assess associations of serum Se and selenoprotein P (SELENOP) concentrations with T2D and hypertension in a cohort of older females and males. Methods: This study included 1500 participants from the Berlin Aging Study II. Diagnosis of T2D was made in case of antidiabetic medication, self-reported T2D, or laboratory parameters. Diagnosis of hypertension was based on self-report, blood pressure measurement, or anti-hypertensive medication. Se was measured by spectroscopy, and SELENOP by ELISA. Multiple adjusted regression models quantified dose-dependent associations. Results: Participants had a median(IQR) age of 68 (65,71) years, and 767 (51%) were women. 191 (13%) participants had T2D and 1126 (75%) had hypertension. Se and SELENOP correlated significantly (r = 0.59, p < 0.001), and were elevated in those with self-reported Se supplementation. Serum Se and SELENOP were not associated with T2D in the whole cohort. In men, SELENOP was positively associated with T2D, OR (95%CI) for one mg/L increase in SELENOP was 1.22 (1.00,1.48). Se was non-linearly associated with hypertension, comparing to the lowest quartile (Q1), and participants with higher Se levels (Q3) had a lower OR (95%CI) of 0.66 (0.45,0.96), which was specific for men. SELENOP positively associated with hypertension, and OR (95%CI) per one mg/L increase was 1.15 (1.01,1.32). Conclusions: The data suggest a sex-specific interrelationship of Se status with T2D and hypertension, with apparent biomarker-specific associations

    Isolation of SelP from culture media of HepG2 cells.

    No full text
    <p>Medium samples from HepG2 cells were chromatographed on HisPur resin. Fractions were analyzed by SDS-PAGE, the gels stained with Coomassie blue (<i>Lower panels</i>) and subjected to Western blotting with anti-SelP antibodies (<i>Upper panels</i>). <i>Lane 1</i>, initial sample, <i>lane 2</i>, flow-though fraction, <i>lane 3</i>, buffer wash, <i>lane 4–10</i>, elution with a gradient of imidazole from 0 to 200 mM in loading buffer. (A) HepG2 cells grown on DMEM medium only (control). (B) HepG2 cells grown on DMEM supplemented with 100 nM Se. (C) HepG2 cells grown on DMEM supplemented with 1 mM thiophosphate (SPO<sub>3</sub>). Protein molecular weights markers in kDa are shown on the <i>left</i>. Experimental details are given in <i>Materials and Methods</i>.</p
    corecore