2,899 research outputs found

    Physicochemical Properties and Catalytic Behavior of the Molecular Sieve SSZ-70

    Get PDF
    SSZ-70 is synthesized using 1,3-bis(isobutyl)imidazolium, 1,3-bis(cyclohexyl)imidazolium, and 1,3-bis(cycloheptyl)imidazolium structure directing agents (SDAs), and the solids obtained are characterized by powder X-ray diffraction (XRD), ^(29)Si magic angle spinning nuclear magnetic resonance (MAS NMR), electron microscopy, nitrogen and hydrocarbon adsorption, and thermogravimetric analyses. The physicochemical properties of SSZ-70 show that it is a new molecular sieve that has similarities to MWW-type materials. The catalytic behavior of SSZ-70 is evaluated through the use of the constraint index (CI) test. Distinct differences in the reactivity between Al-SSZ-70 and SSZ-25 (MWW) are observed and are the consequences of the structural differences between these two molecular sieves

    The Role of Diffusive Shock Acceleration on Nonequilibrium Ionization in Supernova Remnant Shocks II: Emitted Spectra

    Full text link
    We present a grid of nonequilibrium ionization models for the X-ray spectra from supernova remnants undergoing efficient diffusive shock acceleration. The calculation follows the hydrodynamics of the blast wave as well as the time-dependent ionization of the plasma behind the shock. The ionization state is passed to a plasma emissivity code to compute the thermal X-ray emission, which is combined with the emission from nonthermal synchrotron emission to produce a self-consistent model for the thermal and nonthermal emission from cosmic-ray dominated shocks. We show how plasma diagnostics such as the G'-ratio of He-like ions, defined as the ratio of the sum of the intercombination, forbidden, and satellite lines to the resonance line, can vary with acceleration efficiency, and discuss how the thermal X-ray emission, when the time-dependent ionization is not calculated self-consistently with the hydrodynamics, can differ from the thermal X-ray emission from models which do account for the hydrodynamics. Finally we compare the thermal X-ray emission from models which show moderate acceleration (~ 35%) to the thermal X-ray emission from test-particle models.Comment: 17 pages, 12 figures. accepted for publication in the Astrophysical Journa

    Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration.

    Get PDF
    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration

    Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana.

    Get PDF
    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed

    X-ray Line Emission from Supernova Ejecta Fragments

    Full text link
    We show that fast moving isolated fragments of a supernova ejecta composed of heavy elements should be sources of K_alpha X-ray line emission of the SN nuclear-processed products. Supersonic motion of the knots in the intercloud medium will result in a bow-shock/knot-shock structure creation. Fast nonthermal particles accelerated by Fermi mechanism in the MHD collisionless shocks diffuse through a cold metallic knot, producing the X-ray emission. We modeled the X-ray emission from a fast moving knot of a mass M ~ 10^{-3} \Msun, containing about 10^{-4} \Msun of any metal impurities like Si, S, Ar, Ca, Fe. The fast electron distribution was simulated using the kinetic description. We accounted for nonlinear effects of shock modification by the nonthermal particles pressure. The K_alpha line emission is most prominent for the knots propagating through dense molecular clouds. The bow shock should be a radiative wave with a prominent infrared and optical emission. In that case the X-ray line spectrum of an ejecta fragment is dominated by the low ionization states of the ions with the metal line luminosities reaching L_x \gsim 10^{31} erg/s. High resolution XMM and Chandra observations are able to detect the line emission from the knots at distances up to a few kpcs. The knots propagating through tenuous interstellar matter are of much fainter surface brightness but long-lived. The line spectra with higher ionization states of the ions are expected in that case. Compact dense knots could be opaque for some X-ray lines and that is important for their abundances interpretation. The ensemble of unresolved knots of galactic supernovae can contribute substantially to the iron line emission observed from the Galactic Center region and the Galactic ridge.Comment: 9 pages, 1 figure; Astronomy and Astrophysics (in press

    The effect of iliac crest autograft on the outcome of fusion in the setting of degenerative spondylolisthesis: a subgroup analysis of the Spine Patient Outcomes Research Trial (SPORT).

    Get PDF
    BACKGROUND: There is considerable controversy about the long-term morbidity associated with the use of posterior autologous iliac crest bone graft for lumbar spine fusion procedures compared with the use of bone-graft substitutes. The hypothesis of this study was that there is no long-term difference in outcome for patients who had posterior lumbar fusion with or without iliac crest autograft. METHODS: The study population includes patients enrolled in the degenerative spondylolisthesis cohort of the Spine Patient Outcomes Research Trial who underwent lumbar spinal fusion. Patients were divided according to whether they had or had not received posterior autologous iliac crest bone graft. RESULTS: There were 108 patients who had fusion with iliac crest autograft and 246 who had fusion without iliac crest autograft. There were no baseline differences between groups in demographic characteristics, comorbidities, or baseline clinical scores. At baseline, the group that received iliac crest bone graft had an increased percentage of patients who had multilevel fusions (32% versus 21%; p=0.033) and L5-S1 surgery (37% versus 26%; p=0.031) compared with the group without iliac crest autograft. Operative time was higher in the iliac crest bone-graft group (233.4 versus 200.9 minutes; p CONCLUSIONS: The outcome scores associated with the use of posterior iliac crest bone graft for lumbar spinal fusion were not significantly lower than those after fusion without iliac crest autograft. Conversely, iliac crest bone-grafting was not associated with an increase in the complication rates or rates of reoperation. On the basis of these results, surgeons may choose to use iliac crest bone graft on a case-by-case basis for lumbar spinal fusion

    Robust wavebuoys for the marginal ice zone: Experiences from a large persistent array in the Beaufort Sea

    Get PDF
    An array of novel directional wavebuoys was designed and deployed into the Beaufort Sea ice cover in March 2014, as part of the Office of Naval Research Marginal Ice Zone experiment. The buoys were designed to drift with the ice throughout the year and monitor the expected breakup and retreat of the ice cover, forced by waves travelling into the ice from open water. Buoys were deployed from fast-and-light air-supported ice camps, based out of Sachs Harbour on Canada’s Banks Island, and drifted westwards with the sea ice over the course of spring, summer and autumn, as the ice melted, broke up and finally re-froze. The buoys transmitted heave, roll and pitch timeseries at 1 Hz sample frequency over the course of up to eight months, surviving both convergent ice dynamics and significant waves-in-ice events. Twelve of the 19 buoys survived until their batteries were finally exhausted during freeze-up in late October/November. Ice impact was found to have contaminated a significant proportion of the Kalman-filter-derived heave records, and these bad records were removed with reference to raw x/y/z accelerations. The quality of magnetometer-derived buoy headings at the very high magnetic field inclinations close to the magnetic pole was found to be generally acceptable, except in the case of four buoys which had probably suffered rough handling during transport to the ice. In general, these new buoys performed as expected, though vigilance as to the veracity of the output is required

    Hydrodynamic Simulation of Supernova Remnants Including Efficient Particle Acceleration

    Full text link
    A number of supernova remnants (SNRs) show nonthermal X-rays assumed to be synchrotron emission from shock accelerated TeV electrons. The existence of these TeV electrons strongly suggests that the shocks in SNRs are sources of galactic cosmic rays (CRs). In addition, there is convincing evidence from broad-band studies of individual SNRs and elsewhere that the particle acceleration process in SNRs can be efficient and nonlinear. If SNR shocks are efficient particle accelerators, the production of CRs impacts the thermal properties of the shock heated, X-ray emitting gas and the SNR evolution. We report on a technique that couples nonlinear diffusive shock acceleration, including the backreaction of the accelerated particles on the structure of the forward and reverse shocks, with a hydrodynamic simulation of SNR evolution. Compared to models which ignore CRs, the most important hydrodynamical effects of placing a significant fraction of shock energy into CRs are larger shock compression ratios and lower temperatures in the shocked gas. We compare our results, which use an approximate description of the acceleration process, with a more complete model where the full CR transport equations are solved (i.e., Berezhko et al., 2002), and find excellent agreement for the CR spectrum summed over the SNR lifetime and the evolving shock compression ratio. The importance of the coupling between particle acceleration and SNR dynamics for the interpretation of broad-band continuum and thermal X-ray observations is discussed.Comment: Accepted for publication in A & A; 14 pages including 11 figure

    Pedicle Screw-Associated Violation of the Adjacent Unfused Facet Joint: Clinical Outcomes and Fusion Rates

    Get PDF
    STUDY DESIGN: Retrospective review of a prospective randomized trial. OBJECTIVES: To compare outcome scores and fusion rates in patients with and without pedicle screw-associated facet joint violation (FJV) after a single-level lumbar fusion. METHODS: Clinical outcomes data and computed tomography (CT) imaging were reviewed for 157 patients participating in a multicenter prospective trial. Post-operative CT scans at 12-months follow-up were examined for fusion status and FJV. Patient-reported outcomes (PROs) included Oswestry Disability Index (ODI) and Visual Analog Scale (VAS) for leg and low back pain. Chi-square test of independence was used to compare proportions between groups on categorical measures. Two-sample t-test was used to identify differences in mean patient outcome scores. Logistic regression models were performed to determine association between FJV and fusion rates. RESULTS: Of the 157 patients included, there were 18 (11.5%) with FJV (Group A) and 139 (88.5%) without FJV (Group B). Patients with FJV experienced less improvement in ODI (P = .004) and VAS back pain scores (P = .04) vs patients without FJV. There was no difference in mean VAS leg pain (P = .4997). The rate of fusion at 12-months for patients with FJV (27.8%) was lower compared to those without FJV (71.2%) (P = .0002). Patients with FJV were 76% less likely to have a successful fusion at 12-months. CONCLUSION: Pedicle screw-associated violation of the adjacent unfused facet joint during single-level lumbar fusion is associated with less improvement in back pain, back pain-associated disability, and a lower fusion rate at 1-year after surgery
    • …
    corecore