310 research outputs found

    Recursive construction of perfect DNA molecules from imperfect oligonucleotides

    Get PDF
    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms

    Beyond the natural proteome:nondegenerate saturation mutagenesis - methodologies and advantages

    Get PDF
    Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to “tweak” the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity

    Human and Organizational Issues for Resilient Communications

    Get PDF
    Human and organizational issues are able to create both vulnerabilities and resilience to threats. In this chapter, we investigate human and organizational factors, conducted through ethnographic studies of operators and sets of interviews with staff responsible for security, reliability and quality in two different organizations, which own and operate utility networks. Ethnography is a qualitative orientation to research that emphasizes the detailed observation and interview of people in naturally occurring settings. Our findings indicate that 'human error' forms the biggest threat to cyber-security and that there is a need for Security Operational Centres to document all cyber-security accidents. Also, we conclude that it will always be insufficient to assess mental security models in terms of their technical correctness, as it is sometimes more important to know how well they represent prevailing social issues and requirements. As a practical recommendation from this work, we suggest that utility organizations engage in penetration testing and perhaps other forms of vulnerability analysis, not only to discover specific vulnerabilities but also to learn more about the mental models they use

    A theoretical model for template-free synthesis of long DNA sequence

    Get PDF
    This theoretical scheme is intended to formulate a potential method for high fidelity synthesis of Nucleic Acid molecules towards a few thousand bases using an enzyme system. Terminal Deoxyribonucleotidyl Transferase, which adds a nucleotide to the 3′OH end of a Nucleic Acid molecule, may be used in combination with a controlled method for nucleotide addition and degradation, to synthesize a predefined Nucleic Acid sequence. A pH control system is suggested to regulate the sequential activity switching of different enzymes in the synthetic scheme. Current practice of synthetic biology is cumbersome, expensive and often error prone owing to the dependence on the ligation of short oligonucleotides to fabricate functional genetic parts. The projected scheme is likely to render synthetic genomics appreciably convenient and economic by providing longer DNA molecules to start with

    Season of Birth and Dopamine Receptor Gene Associations with Impulsivity, Sensation Seeking and Reproductive Behaviors

    Get PDF
    Season of birth (SOB) has been associated with many physiological and psychological traits including novelty seeking and sensation seeking. Similar traits have been associated with genetic polymorphisms in the dopamine system. SOB and dopamine receptor genetic polymorphisms may independently and interactively influence similar behaviors through their common effects on the dopaminergic system.Based on a sample of 195 subjects, we examined whether SOB was associated with impulsivity, sensation seeking and reproductive behaviors. Additionally we examined potential interactions of dopamine receptor genes with SOB for the same set of traits. Phenotypes were evaluated using the Sociosexual Orientation Inventory, the Barratt Impulsivity Scale, the Eysenck Impulsivity Questionnaire, the Sensation Seeking Scale, and the Delay Discounting Task. Subjects were also asked about their age at first sex as well as their desired age at the birth of their first child. The dopamine gene polymorphisms examined were Dopamine Receptor D2 (DRD2) TaqI A and D4 (DRD4) 48 bp VNTR. Primary analyses included factorial genderxSOB ANOVAs or binary logistic regression models for each dependent trait. Secondary analysis extended the factorial models by also including DRD2 and DRD4 genotypes as independent variables. Winter-born males were more sensation seeking than non-winter born males. In factorial models including both genotype and season of birth as variables, two previously unobserved effects were discovered: (1) a SOBxDRD4 interaction effect on venturesomeness and (2) a DRD2xDRD4 interaction effect on sensation seeking.These results are consistent with past findings that SOB is related to sensation seeking. Additionally, these results provide tentative support for the hypothesis that SOB modifies the behavioral expression of dopaminergic genetic polymorphism. These findings suggest that SOB should be included in future studies of risky behaviors and behavioral genetic studies of the dopamine system

    Population Substructure and Control Selection in Genome-Wide Association Studies

    Get PDF
    Determination of the relevance of both demanding classical epidemiologic criteria for control selection and robust handling of population stratification (PS) represents a major challenge in the design and analysis of genome-wide association studies (GWAS). Empirical data from two GWAS in European Americans of the Cancer Genetic Markers of Susceptibility (CGEMS) project were used to evaluate the impact of PS in studies with different control selection strategies. In each of the two original case-control studies nested in corresponding prospective cohorts, a minor confounding effect due to PS (inflation factor λ of 1.025 and 1.005) was observed. In contrast, when the control groups were exchanged to mimic a cost-effective but theoretically less desirable control selection strategy, the confounding effects were larger (λ of 1.090 and 1.062). A panel of 12,898 autosomal SNPs common to both the Illumina and Affymetrix commercial platforms and with low local background linkage disequilibrium (pair-wise r2<0.004) was selected to infer population substructure with principal component analysis. A novel permutation procedure was developed for the correction of PS that identified a smaller set of principal components and achieved a better control of type I error (to λ of 1.032 and 1.006, respectively) than currently used methods. The overlap between sets of SNPs in the bottom 5% of p-values based on the new test and the test without PS correction was about 80%, with the majority of discordant SNPs having both ranks close to the threshold. Thus, for the CGEMS GWAS of prostate and breast cancer conducted in European Americans, PS does not appear to be a major problem in well-designed studies. A study using suboptimal controls can have acceptable type I error when an effective strategy for the correction of PS is employed

    Pramipexole effects on startle gating in rats and normal men

    Get PDF
    Dopamine D3 receptors regulate sensorimotor gating in rats, as evidenced by changes in prepulse inhibition (PPI) of startle after acute administration of D3 agonists and antagonists. In this study, we tested the effects of the D3-preferential agonist, pramipexole, on PPI in normal men and Sprague–Dawley rats. Acoustic startle and PPI were tested in clinically normal men, comparing the effects of placebo vs. 0.125 mg (n = 20) or placebo vs. 0.1875 mg (n = 20) pramipexole, in double blind, crossover designs. These measures were also tested in male Sprague–Dawley rats using a parallel design [vehicle vs. 0.1 mg/kg (n = 8), vehicle vs. 0.3 mg/kg (n = 8) or vehicle vs. 1.0 mg/kg pramipexole (n = 8)]. Autonomic and subjective measures of pramipexole effects and several personality instruments were also measured in humans. Pramipexole increased drowsiness and significantly increased PPI at 120-ms intervals in humans; the latter effect was not moderated by baseline PPI or personality scale scores. In rats, pramipexole causes a dose-dependent reduction in long-interval (120 ms) PPI, while low doses actually increased short-interval (10–20 ms) PPI. Effects of pramipexole on PPI in rats were independent of baseline PPI and changes in startle magnitude. The preferential D3 agonist pramipexole modifies PPI in humans and rats. Unlike indirect DA agonists and mixed D2/D3 agonists, pramipexole increases long-interval PPI in humans, in a manner that is independent of baseline PPI and personality measures. These findings are consistent with preclinical evidence for differences in the D2- and D3-mediated regulation of sensorimotor gating

    Exogenous Visual Orienting Is Associated with Specific Neurotransmitter Genetic Markers: A Population-Based Genetic Association Study

    Get PDF
    Background: Currently, there is a sense that the spatial orienting of attention is related to genotypic variations in cholinergic genes but not to variations in dopaminergic genes. However, reexamination of associations with both cholinergic and dopaminergic genes is warranted because previous studies used endogenous rather than exogenous cues and costs and benefits were not analyzed separately. Examining costs (increases in response time following an invalid precue) and benefits (decreases in response time following a valid pre-cue) separately could be important if dopaminergic genes (implicated in disorders such as attention deficit disorder) independently influence the different processes of orienting (e.g., disengage, move, engage). Methodology/Principal Findings: We tested normal subjects (N = 161) between 18 and 61 years. Participants completed a computer task in which pre-cues preceded the presence of a target. Subjects responded (with a key press) to the location of the target (right versus left of fixation). The cues could be valid (i.e., appear where the target would appear) or invalid (appear contralateral to where the target would appear). DNA sequencing assays were performed on buccal cells to genotype known genetic markers and these were examined for association with task scores. Here we show significant associations between visual orienting and genetic markers (on COMT, DAT1, and APOE; R 2 s from 4 % to 9%). Conclusions/Significance: One measure in particular – the response time cost of a single dim, invalid cue – was associate
    corecore