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ABSTRACT 

Beyond the natural proteome, high-throughput mutagenesis offers the protein 

engineer an opportunity to “tweak” the wild-type activity of a protein to create a 

recombinant protein with required attributes. Of the various approaches available, 

saturation mutagenesis is one of the core techniques employed by protein engineers 

and in recent times, nondegenerate saturation mutagenesis is emerging as the 

approach of choice. This review compares the current methodologies available for 

conducting nondegenerate saturation mutagenesis with traditional, degenerate 

saturation and briefly outlines the options available for screening the resulting 

libraries, to discover a novel protein with the required activity and/or specificity.  
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1. INTRODUCTION 

Natural proteomes provide a plethora of proteins that scientists employ in widespread 

applications. But despite nature’s bounty, there are many occasions where the natural 

proteins don’t quite have the activity needed. Perhaps an enzyme’s affinity for a key 

substrate is poor, or that enzyme lacks the necessary stability. Maybe a transcription factor 

that binds a particular DNA sequence is needed and the required specificity cannot be found 

naturally. More frequently, the CDR region of an antibody or antibody fragment will need to 

be changed to create a key therapeutic. This is where protein engineering comes to the fore, 

to create those novel proteins. Protein engineering itself relies on two key components: 

mutagenesis of the encoding gene and screening of the resulting proteins created. 

The earliest methods of mutagenesis were conceptually crude. The entire genome of an 

organism was targeted with a mutagen (chemical or physical), high kill rates were accepted 

and any surviving organisms were screened for a phenotype of interest. Notwithstanding the 

lack of knowledge regarding causative mutation(s), the study of such mutants led to 

information that was key to elucidating many biochemical pathways. However, by the late 

1970’s alternative, more refined approaches had begun to emerge. For example, Shortle 

and Nathans (1978) were able to target such random mutagenesis to short, specific regions 

of DNA within a viral chromosome. Around this time, the first reports of successful site-

directed mutagenesis were also published. Michael Smith and co-workers had already 

established the importance of comparing mutant with wild type sequences in localizing 

genetic function (Smith, Brown, Air, Barrell, Coulson, Hutchison & Sanger, 1977) and in 

1978, Smith and co-workers published the first example of site-directed mutagenesis 

mediated by oligonucleotides (Hutchison, Phillips, Edgell, Gillam, Jahnke & Smith, 1978). 

These two approaches: site-directed mutagenesis and targeted random mutagenesis would 

serve as forerunners for the high-throughput mutagenesis strategies of today. 

Site directed mutagenesis developed rapidly from 1978 onwards, with protocols to improve 

mutagenesis efficiency such as Kunkel mutagenesis (using Escherichia coli dut- ung- strains) 
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coming to the fore in the 1980’s (Kunkel, 1985). However, even such “rapid” protocols were 

relatively lengthy and by the late 1980’s favor had returned to simple primer-extension-based 

methods, as originally described by Michael Smith and co-workers. Smith shared the Nobel 

Prize for Chemistry in 1993 “For his fundamental contributions to the establishment of 

oligonucleotide-based, site-directed mutagenesis and its development for protein studies”, 

with Kary B. Mullis, the inventor of PCR (Smith, 1994). Site directed mutagenesis and PCR 

were subsequently combined to create megaprimer mutagenesis and its various 

modifications (Ke and Madison, 1997 and references therein). Megaprimer mutagenesis is a 

rapid process that generates a PCR amplicon for incorporation into the original gene via 

cassette mutagenesis (Wells, Vasser & Powers, 1985). Meanwhile, a commercial approach, 

the Stratagene QuikChange® Site-Directed Mutagenesis Kit (Agilent Technologies, cat # 

200518) and its improvements (Liu & Naismith, 2008) were yet faster since they require no 

further cloning steps.  

Thus, by the early 1990s, introduction of a single point mutation at a single location was a 

routine and rapid laboratory procedure. The next major advancement would be to introduce 

multiple mutations in one step, to generate a whole library of variations based on a single 

gene. Now, methodologies diversified, depending on the knowledge of the original gene and 

the likely number of mutations required. To introduce random mutations at random locations 

within an amplicon, error-prone PCR was first employed (Leung, Chen, & Goeddel, 1989; 

Cadwell, & Joyce, 1991). Thereafter, error-prone PCR was itself employed within gene 

shuffling (Stemmer, 1994; Crameri, Raillard, Bermudez, & Stemmer, 1998), which effectively 

“breeds” homologous genes together on a laboratory timescale. Such techniques are 

immensely powerful, albeit that by their nature, they can never cover all of the theoretical 

sequence space. Nonetheless, gene shuffling offers an elegant solution when engineering a 

protein to create a desired activity, particularly when predicting the necessary locations of 

mutations would be impossible (eg. Campbell, Tour, Palmer, Steinbach, Baird, Zacharias & 

Tsien, 2002). By contrast, saturation mutagenesis offers changes to protein residues at one 
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or more defined locations simultaneously, also producing diverse variants but potentially 

within the theoretical sequence space, depending on the number of codons targeted and the 

methodology employed. In effect, saturation mutagenesis is conceptually a simple extension 

of site-directed mutagenesis, but in a high-throughput format. Instead of a single location, 

saturation mutagenesis targets multiple codons, making multiple substitutions in each, in a 

single experiment. Unsurprisingly therefore, saturation mutagenesis is a key tool in a protein 

engineer’s arsenal. However, the techniques used to generate such mutations can be far 

from straightforward and are the subject of the current review. 
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2. ADVANTAGES OF NONDEGENERATE SATURATION 

By its very nature, the genetic code is degenerate. A codon (3 bases) encodes a single 

amino acid. Each position within that codon can be any one of the four bases A, C, G and T. 

Thus, there are a total of 64 codons (43 combinations of the four bases, where order is 

important). Of those 64 codons, 3 are termination codons, leaving the remaining 61 codons 

to encode the twenty naturally-occurring amino acids. However, as any student of biology 

knows, those 61 codons are not distributed evenly. Specifically, some amino acids are 

encoded by 6 codons (Leu, Ser, Arg), some by 4 codons (Ala, Gly, Pro, Thr, Val), one by 3 

codons (Ile), several by 2 codons (Cys, Asp, Glu, Phe, His, Lys, Asn, Gln, Tyr) whilst two 

amino acids are encoded by just 1 codon each (Met, Trp). Thus a conventional degenerate 

saturation codon (NNN, where N = a mixture of A, C, G & T and NNN a mixture that 

collectively contains all four bases at each position of the codon) is actually a mixture of all 

64 possible sequences, that necessarily encodes the various amino acids disproportionately. 

More degenerate codons equates to yet more sequences / disproportionality (bias). Thus a 

piece of DNA containing three such codons would in practice be a mixture of 262144 (643) 

different DNA sequences.  

Aside from the huge numbers involved, the disproportionality / bias encoded by conventional 

saturation has major impact when screening the encoded library for the “best” protein(s), 

particularly where ligand-based screening technologies are involved (see section 4.1). Thus 

scientists have attempted to reduce both sheer numbers and concomitantly the encoded 

bias either by reducing redundancy or else by eliminating it altogether.  

Initial approaches to reduce redundancy involved using simple limited codon redundancy 

such as NNK or NNS saturation codons (K=T/G, S=G/C) and indeed, this became the 

“norm” for many years. NNK / NNS reduces from 64 to 32 codons to encode the 20 amino 

acids (+1 termination codon), so reducing numbers and decreasing the bias but not yet 

eliminating it. More recently, the 22c-trick has been described, which reduces the number of 

codons to just 22 per saturated position (Kille, Acevedo-Rocha, Parra, Zhang, Opperman, 
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Reetz & Acevedo, 2013), resulting in 2 codons for Val and Leu, 1 codon for all other amino 

acids and 0 termination codons. The consequences of these methods in comparison with 

fully nondegenerate saturation (exactly 20 codons encoding 20 amino acids) are compared 

in Figure 1.  

As can be seen from Figure 1, conventional methods of degenerate saturation are largely 

inadequate. Diversity is the gold-standard when creating gene libraries. Within the context of 

protein engineering, diversity is a measure of the percentage of unique species within a 

library. Fig 1a demonstrates that diversity is poor even when just one codon is saturated via 

conventional degenerate codons and even drops off rapidly with the 22c-trick. By contrast, it 

is maintained at a theoretical level of 100% via nondegenerate approaches, no matter how 

many codons are saturated. Bias is an alternative way of addressing this problem. Fig 1b 

explains why diversity is so poor in conventionally-constructed saturation libraries. Whilst the 

numbers in Fig 1b reflect a worst-case scenario (i.e. the ratio of the most common codon 

combinations to the rarest codon combinations), it is clear that there is no equality of 

representation between different gene sequences, with some being very populous in 

comparison with others. Finally, only nondegenerate methods and the 22c trick prevent 

encoded truncation with the gene library (Fig 1c). Truncation can be a problem because 

truncated, non-functional proteins can be prone to aggregation, which leads to protein 

precipitation. 

By contrast, non-degenerate methods allow the user to include all 20 codons in 

approximately equal ratio. Some nondegenerate methodologies go still further and permit 

the user to choose exactly which amino acids are (and are not) encoded at a specified 

codon and further still, in which relative proportions (either equal or alternative, defined 

ratios) - see section 3.2. In these ways, along with the removal of termination codons, 

nondegenerate methods permit the size of the library to be minimized whilst concomitantly 

maximizing the number of encoded variants for screening. The combination of those 

attributes has very positive ramifications since modern, directed evolution puts pressure on 
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creating high-quality libraries with reduced number of variants to boost the efficiency of 

screening experiments (Tang, Gao, Zhu, Wang, Zhou, & Jiang, 2012) – see section 4.  
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3. SATURATION MUTAGENESIS METHODS 

 

3.1 Core techniques in saturation mutagenesis 

Whether saturation mutagenesis is degenerate, near nondegenerate (the 22c-trick, Kille et 

al., 2013) or wholly nondegenerate, all methodologies rely on the same core techniques, as 

described in this section. 

 

3.1.1 Cassette mutagenesis 

A DNA “cassette” is simply a double-stranded piece of DNA that can be spliced into a gene 

of interest, so replacing the original gene sequence. Splicing usually occurs via conveniently-

located restriction sites that are present in the original gene and are incorporated at either 

end of the cassette. In its first iteration, saturation mutagenesis was achieved via cassette 

mutagenesis using synthetic oligonucleotide cassettes containing degenerate bases at 

defined locations (Wells et al., 1985). DNA cassettes may vary in length from tens to 

hundreds of base pairs and can be simple synthetic DNA (containing degenerate bases as 

required), PCR amplicons (made from primers with degenerate bases as required) or be 

created by nondegenerate methodologies such as MAX randomization (section 3.2.2), 

ProxiMAX randomization (section 3.2.3) or Slonomics® (section 3.2.4). 

 

3.1.2 Simple primer-extension mutagenesis 

The original method of site-directed mutagenesis was based on primer extension (Hutchison 

et al., 1978; Smith, 1994). In essence, a primer containing a centrally-located mutation was 

annealed to a single-standed circular DNA template and extended around the template to 

create a heteroduplex. Because the parental strand of wild type DNA remained intact, the 

efficiency of this mutagenesis was low. However, the methodology has been developed to 

high efficiency over the decades. One of the most favored strategies is now QuikChange® 
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Mutagenesis (Agilent Technologies). Here, double-stranded plasmid template is amplified by 

PCR with a pair of complementary primers that each contain the required mutation(s) in a 

central location. After extension around each strand of the entire plasmid, the parental DNA 

is destroyed by DpnI digestion (requires Dam methylation) and the two mutated strands are 

annealed together (to create a plasmid with two staggered nicks) and transformed into 

bacteria without further modification. In terms of saturation mutagenesis, the pair of primers 

need not contain a single mutation, but may instead contain a degenerate codon or indeed 

take the form of a DNA cassette as described in section 3.1.1. To expand the technology 

further, the QuikChange® Multi Site-Directed Mutagenesis Kit has been developed to target 

up to five sites simultaneously (Hogrefe, Cline, Youngblood & Allen, 2002). Target residues 

have to be at least 5 codons apart and so automatically exclude targeting contiguous sites. 

Although quick and simple, QuikChange® has many limitations for example, complementary 

primers are prone to self-priming or give low efficiency with more than one mutated position 

(Liu & Naismith, 2008). The protocol of QuikChange® has been the subject of modifications 

by many research laboratories. 

 

3.1.3 Overlap extension mutagenesis 

The use of overlap extension PCR in mutagenesis was first described in 1988 (Higuchi, 

Krummell & Saiki, 1988). In essence, PCR fragments (created from primers that contain 

mutations) which have complementary 3’ regions can be used to prime each other and so 

join those fragments together. This technique is used extensively in both degenerate and 

nondegenerate saturation mutagenesis, with fragments created as originally described by 

Higuchi et al (in which the overlaps contain the mutations), or for joining cassettes together 

in which the mutations are contained internally. 
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3.2 Nondegenerate saturation methodologies 

3.2.1. TRIM technology: trinucleotide phosphoramidites 

The original approach to nondegenerate saturation mutagenesis, TRIM technology employs 

trinucleotide phosphoramidites (Virnekäs, Ge, Plückthun, Schneider, Wellnhofer & Moroney, 

1994). Essentially, rather than adding one base at a time as in oligonucleotide DNA 

synthesis, three bases are added to a growing oligonucleotide in a single reaction. Thus to 

saturate a given codon, a pre-defined mixture of trinucleotide phosphoramidites is added to 

the growing DNA strand. However, single bases of DNA have differing coupling efficiencies 

during oligonucleotide synthesis meaning that a biased mixture of phosphoramidites is 

required to effect equimolar addition (Ho, Britton, Stone, Behrens, Leffet, Hobbs, et al., 

1996) and this effect is amplified when coupling trinucleotides. To mitigate the problem, it is 

probably wise to use a commercial source of DNA produced using TRIM technology, such 

as Gene Art™ (Thermofisher) rather than undertaking synthesis with trinucleotide 

phosphoramidites in one’s own laboratory. The resulting DNA can be used in any saturation 

protocol of choice. 

 

3.2.2   MAX randomization 

MAX randomization (Hughes, Nagel, Santos, Sutherland & Hine, 2003) was one of the first 

techniques to be published that achieves nondegenerate saturation without the need for any 

specialized chemicals, reagents or equipment. In essence, MAX randomisation relies on 

“selectional hybridisation” in which a series of short selection oligonucleotides hybridise with 

a complementary template oligonucleotide that is conventionally-saturated at the relevant 

codons. After the selection oligonucleotides have been ligated, asymmetric PCR ensures 

that only the selection strand is amplified (Figure 2). Thus MAX randomization generates a 

cassette which is typically used in cassette mutagenesis, but could be employed as a 

double-stranded primer in QuikChange® mutagenesis, or be joined with other sequences via 
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overlap PCR. Note that although MAX randomization can be used to mutate multiple 

codons, only a maximum of two contiguous (neighbouring) codons can be saturated, owing 

to the addressing function of the conserved part of the selection oligonucleotides. Again, 

MAX randomization yields a double-stranded DNA cassette that can be used in any 

mutagenesis protocol of choice. 

 

3.2.3   ProxiMAX randomization 

Like other nondegenerate techniques, ProxiMAX is a nondegenerate saturation technology 

that uses one codon only per amino acid (Ashraf, Frigotto, Smith, Patel, Hughes, Poole et 

al., 2013). In common with MAX randomization, ProxiMAX does not require any specialized 

reagents, but rather relies on conventional oligonucleotides, a Type IIS restriction enzyme 

and blunt-ended ligation. The process involves cycles of ligation, amplification and digestion 

with the consequence that one codon is added to the end of a growing DNA fragment, per 

cycle (Figure 3). However, that “codon” is really a user-defined mixture of up to 20 individual, 

double-stranded oligonucleotides. These oligonucleotides are largely-conserved sequences 

that can be fully or partially double-stranded, or be self-complementary hairpins, but each 

terminates with a unique triplet encoding just one amino acid (typically chosen for maximal 

expression in the organism of choice – hence the names MAX/ProxiMAX randomization). In 

practice, the mixture is often selected to comprise less than 20 such MAX codons, for 

example omitting codons for cysteine and methionine or selecting just the polar residues. As 

such, ProxiMAX randomization allows the user to define exactly which amino acids are 

encoded at each individual saturated position, which can either be contiguous or separated 

by regions of conserved sequence. The relative proportions of codons at each saturated 

position may also be user-defined. ProxiMAX can be achieved manually with good results 

(Poole, 2015) or via automation, which gives excellent compliance with library design (Ashraf 

et al., 2013). Automation also permits the addition of hexameric, two-codon units rather than 

one codon per cycle, though this modification requires automation, owing to the sheer 
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number (400) of oligonucleotides (codon donors) involved (Frigotto, Smith, Brankin, Sedani, 

Cooper, Kanwar et al., 2015). The use of two codons or hexamer nucleotides, rather than 

one per cycle, boosts efficiency and enhances performance of high-throughput mutagenesis 

reducing synthesis time. The commercial development of ProxiMAX, Colibra™ (Isogenica 

Ltd.) involves comprehensive quality control tests, via next generation sequencing, which 

allow for careful monitoring of library fragments manufacture. ProxiMAX can be used to 

saturate multiple contiguous codons and the resulting DNA cassettes are typically linked 

together by ligation or used in cassette mutagenesis, but could also be used in overlap 

extension PCR or as primers in QuikChange® mutagenesis. 

 

3.2.4   Slonomics® / SlonoMax™ 

Originally published as an automated gene synthesis technology (Van den Brulle, Fischer, 

Langmann, Horn, Waldmann, Arnold et al., 2008; Schatz, O'Connell, Schwer & Waldmann, 

2010), Slonomics® is also a cycle-based process, though one that avoids amplification and 

involves sticky-ended ligation of hairpin oligonucleotide building blocks typically with three-

base single-stranded overhangs, called splinkers and anchors. The process requires a total 

of 64 splinkers and 4096 anchors. Initially, a selected splinker is ligated to a selected anchor. 

The ligated product is immobilized via a biotin moiety contained within the anchor. Washing 

removes any unligated splinker and the resulting immobilized product is then digested with a 

Type IIS endonuclease that leaves a three-base, single-stranded overhang. The immobilized 

sequences are then discarded, so removing digested (and any unligated) anchor. Meanwhile 

the supernatant, containing the extended splinker, enters the next cycle. In essence, each 

cycle transfers six bases of DNA (a staggered three bases on each strand) from the anchor 

to the splinker (Figure 4). The process is repeated to generate up to six codons (18 bp) in 

what is termed an “elongation fragment” and several elongation fragments can be combined 

via digestion with two further Type IIS restriction enzymes that each leave unique sticky 

ends, followed by multiple ligations. Slonomics® has been adapted to make combinatorial 
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libraries by using mixtures of splinkers and anchors in a commercial process called 

SlonoMax™ (Waldmann, 2006; Waldmann, 2013). 

 

3.2.5. DC-analyzer and MDC-analyzer 

DC-analyzer stands for Degenerate Codon Analyzer and is a computational approach to 

designing a saturated gene library (Tang et al., 2012). Specifically, DC-analyzer is 

downloadable software that designs combinatorial degenerate primers. As a consequence of 

DC-analyzer’s programming, termination codons, codon degeneracy and rare codons of E. 

coli are eliminated from the design. In practice, DC-analyzer selects one codon for each 

amino acid and outputs a series of mainly limited degeneracy primers that the user must 

synthesize and then employ in combination within a PCR reaction or choice, to perform 

saturation mutagenesis. As such, DC-analyzer eliminates bias and so increases the diversity 

of the encoded library. DC-analyzer is used to design “small-intelligent libraries”, as an 

alternative to NNS randomization. Owing to the numbers of primers involved, DC-analyzer 

typically targets small numbers of codons (1 and 2 codons were demonstrated by Tang et 

al., 2012). To target higher numbers of codons, Multi-Site Degenerate Codon Analyzer 

(MDC-analyzer) was developed (Tang, Wang, Ru, Sun, Huang & Gao, 2014).  

MDC-analyzer allows for randomization of more than two codons that may be contiguous 

(three contiguous codons were demonstrated), and rather than producing full saturation, 

aims to reduce library size by designing DNA sequences to encode selected subsets of 

amino acids at saturated positions, rather than all twenty amino acids. Using prediction 

programs in conjugation with mutagenesis technology gives a so-called ‘rational random’ 

approach. Once the required subsets of amino acids have been chosen, using applications 

such as ConSurf-HSSP (Glaser, Rosenberg, Kessel, Pupko & Ben-Tal, 2005) and HotSpot 

Wizard (Pavelka, Chovancova & Damborsky, 2009) which analyze the favourable properties 

of amino acids at key regions of a protein, MDC designs multiple degenerate 

oligonucleotides to encode the required amino acids without termination codons or E. coli 
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rare codons. By accepting that some non-required amino acids will also be encoded, MDC-

Analyzer drastically reduces the number of oligonucleotides required to perform the 

mutagenesis, in comparison with DC-Analyzer (Tang et al., 2014). 

 

3.3 Near nondegenerate saturation: the 22c-trick 

Conceptually similar to DC-Analyzer, the 22c-trick (Kille et al, 2013) uses a combination of 

PCR primers that contain pre-defined, limited degeneracy at the selected codons. 

Specifically, saturated codons are generated during a PCR reaction via a mixture of three 

primers: one contains codon NDT (A/C/G/T; A/G/T; T) another VHG (A/C/G; A/C/T; G) and 

the final, codon TGG. As described in section 2, when used in combination, these primers 

collectively encode valine and leucine twice, the other 18 amino acids once each and no 

termination codons. Note that this process cannot saturate multiple contiguous codons. 

Moreover, optimization of annealing temperature is essential to achieve good saturation 

(Kille et al., 2013), since different primers will necessarily have differing annealing 

temperatures and diversity would be affected quite severely if higher numbers of codons 

were targeted using this methodology (Figure 1). 
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4. SCREENING THE LIBRARY:  METHODS, LIBRARY SIZE AND THE IMPORTANCE 

OF DIVERSITY. 

In extending the natural proteome via protein engineering, library production is only the first 

part of a complex process. Once the gene library has been expressed, the resulting protein 

library may contain from hundreds up to ten trillion (1013) different components, depending 

on the library design and methodology used in construction. Without a suitable screening 

procedure such libraries would be useless – they can hardly be examined one component at 

a time. In fact, the majority of libraries fall somewhere in between the two size limits and thus 

screening several million to billion components is non-trivial. Libraries with sizes greater than 

1010 cannot generally be screened in vivo since transformation efficiency will limit the yield of 

clones. Thus the largest libraries are usually screened by using in vitro methodologies. 

Meanwhile, the type of protein library is also important in selecting a screening methodology. 

Ligand-binding libraries such as antibodies, transcription factors etc. tend to be screened via 

biopanning approaches (immobilized ligand bound by solution-based protein – section 4.1). 

In contrast, unless seeking an essentially irreversible enzyme inhibitor, enzyme libraries tend 

to require a different approach, since binding an immobilized substrate (ligand) would 

normally be followed by processing and release of the substrate, so preventing the 

immobilisation of functional proteins that forms a key part of the biopanning process. 

 

4.1   Methods for screening ligands 

When biopanning a ligand-binding protein library, the ligand of choice is immobilized and the 

protein library added in solution. After binding, the majority of the library (non-binding 

protein) is washed away, bound proteins are eluted, these populations are amplified and the 

process is repeated, typically 4-5 times. Thereafter, individual species are isolated, 

sequenced and their characteristics investigated.  
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Thus biopanning is dependent on mass action, which in turn requires that the library 

components are all present in approximately equal concentrations for accurate discovery of 

the “best” proteins. Thus good diversity is essential. If all library components are unique, 

i.e.100% diversity, and expressed similarly (which is why rare codons should be avoided 

during saturation), all protein components will have approximately equal concentrations. In 

contrast, a library with low diversity will have many different genes encoding one protein and 

just one gene encoding another, which will lead to biased concentrations of proteins (see 

Figure 1) and thus delivery of the populous proteins as the best “hits”, regardless of their 

suitability.  

The various options for biopanning strategies are described in this section. 

 

4.1.1   Phage display 

George Smith first proposed that filamentous phage can serve as carriers of foreign DNA 

and so provide a means to screen library variants such as those of antibodies (Scott and 

Smith, 1990; Smith, 1985). 

This method of screening libraries relies on infecting bacterial cells with viruses called 

bacteriophage. Phage chromosomes have capacity to take in foreign DNA fragments and 

both replicate and express them from within host bacteria, usually E. coli. Since this foreign 

DNA is spliced into the phage coat protein genes, upon its expression the protein will be 

exposed on the outer surface of the phage particle. (Smith and Petrenko, 1997). Specifically, 

the library of variants is cloned into phage vectors which then transfect bacterial cells. One 

cell will carry one variant only and expressed proteins of that variant will be exposed on the 

surface of phage which are then screened by biopanning. After each round of selection, the 

eluted phage are amplified by passage through E. coli. In addition to antibody fragments, 

phage display has been successful in screening libraries to find insulin and IRF-1 receptor 

agonists and antagonists (Dedova, Fletcher, Liu, Wang, Blume & Brissette et al., 2004); 
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small peptides that mimic erythropoietin (Wrighton, Farrell, Chang, Kashyap, Barbone & 

Mulcahy et al., 1996; McConnell, Dinh, Le, Brown, Becherer & Blumeyer et al., 1998) and 

even an inhibitor for the enzyme pancreatic lipase (Lunder, Bratkovic, Kreft & Strukelj, 2005). 

Though useful for many applications, phage display is limited by transformation efficiency 

and cannot therefore be used to screen libraries of greater than 109 to 1010 components 

(Odegrip, Coomber, Eldridge, Hederer, Kuhlman & Ullman et al., 2004).  

 

4.1.2   Ribosome display 

Ribosome display is an in vitro method of selection invented by Plückthun (Hanes & 

Plückthun, 1997). It was the first in vitro selection method, inspired by work of Mattheakis 

and co-workers (Mattheakis, Bhatt & Dower, 1994) who demonstrated affinity selection using 

polysomes which enable the critical link between genotype and phenotype that is essential 

for any biopanning application. As an in vitro method ribosome display is not limited by 

transformation efficiency and can therefore be used to screen very large libraries.  

The E. coli S30 system is a coupled transcription/translation system that forms a key part of 

ribosome display and was also used by Mattheakis and co-workers. They displayed a library 

of short, 13-mer opioid peptides on E. coli S30 followed by affinity screening against 

immobilized antibodies. Because the expressed proteins were coupled with mRNA, selected 

hits could be reverse transcribed into cDNA and then sequenced to determine the nucleotide 

sequence encoding the displayed peptide (Mattheakis et al., 1994). 

Ribosome display also uses the E. coli S30 system to create whole, correctly-folded proteins 

that remain coupled with the S30 complex and mRNA (Hanes & Plückthun, 1997). In the first 

instance, PCR is employed to both amplify the library and couple it with a T7 promoter and 

ribosome-binding site. Following transcription to RNA, the E. coli S30 coupled 

transcription/translation system translates the mRNA in vitro. This system also includes 

various factors than enable correct folding of the translated proteins and stabilize produced 
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ribosome-mRNA-protein complexes. These complexes are then screened by biopanning. 

After each round of selection, isolated library members are eluted from the ribosome 

complex and the mRNA is reverse transcribed into cDNA ready for another round of 

biopanning or for sequencing of individual isolates. (Hanes & Plückthun, 1997).  

Ribosome display is often used to improve protein affinity or stability and can be used in 

combination with other selection pressure mechanisms (Buchanan, Ferraro, Rust, Sridharan, 

Franks & Dean et al., 2012). The first exemplification of this cell-free system was used to 

screen single-chain fragments (scFv) of an antibody (Hanes & Plückthun, 1997). 

Subsequently, Minter and co-workers have used ribosome display in conjunction with three 

stability selective pressure factors for two therapeutic proteins that gave problems during the 

drug development phase (Buchanan et al., 2012). Specifically, the tendency of erythropoietin 

to aggregate was reduced and a 1000-fold improvement in the soluble expression of 

granulocyte colony-stimulating factor was gained.  

In a conceptually similar approach to ribosome display, mRNA may be covalently bound to 

its encoded protein (Xiao, Bao & Zhao, 2014). Because this modified approach and 

ribosome display more generally are performed wholly in vitro, neither method is limited by 

transformation efficiency.  

 

4.1.3   CIS display 

CIS display is an in vitro screening technology that uses the RepA family of proteins of the 

R1 plasmid as key components. RepA is a bacterial replication initiator protein which has a 

special feature of high-fidelity cis-activity: it binds only to the DNA from which it was 

expressed. The first part of the method involves construction of DNA consisting of: N-

terminal promoter, library, RepA gene (repA), CIS element and C-terminal ori. Once these 

elements are joined in that order, in vitro transcription begins at the promoter and ends when 

it reaches the CIS element. Simultaneous, in vitro translation produces RepA protein which 
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binds to its encoding DNA at the CIS region and ori sequence. As a result, the nascent 

polypeptide (from the library) is fused with RepA. Ultimately, through its cis activity, RepA 

protein provides the crucial physical linkage between genotype (DNA) and phenotype 

(protein; Figure 5). After each round of biopanning, DNA from the eluted complex is either 

amplified by PCR ready for the next round of biopanning, or sequenced to identify the 

interacting library component (Odegrip et al., 2004; Mathonet, Ioannou, Betley & Ullman, 

2011).  

CIS display has been used in antibody research (Odegrip et al., 2004), peptide maturation, 

ligand discovery including therapeutic peptides (Mathonet et al., 2011), and engineering of 

small WW scaffolds (small β-sheet motifs; Patel, Mathonet, Jaulent & Ullman, 2013). CIS 

display technology has also been used to identify 12-mer peptides resistant to thrombin, 

chymotrypsin and plasma proteases (Eldridge, Cooley, Odegrip, McGregor, FitzGerald & 

Ullman, 2009). 

 

4.2   Methods for screening enzymes 

Enzymes are often engineered to effect a change in substrate specificity, solvent tolerance 

or stability. Unless an irreversible enzyme inhibitor is sought (see section 4.1) there is much 

more variety in screening methodologies, since screening is necessarily based on 

phenotypic properties. Examples of two key strategies are given herein (sections 4.2.1. and 

4.2.2). 

 

4.2.1   Double selection: positive and negative 

Functional assays are performed in in vivo systems and rely on production of phenotypes 

which are different to the native molecule and thus, recognized as mutant. Double selection 

is a method that has been used with different selection markers – one positive and one 

negative (Liu & Schultz, 1999; Pastrnak & Schultz, 2001). A well-established positive marker 
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is based on antibiotic resistance such as the β-lactamase gene while negative selection can 

be based on a toxic gene such as barnase. In further studies β-lactamase was replaced with 

chloramphenicol acetyl transferase (CAT), since chloramphenicol has proved to have 

stronger selection pressure than other antibiotics owing to its bacteriostatic nature (Pastrnak, 

Magliery & Schultz, 2000). 

Schultz and co-workers use this approach to study the aminoacyl-tRNA synthetase (AARS) 

family of enzymes, specifically to engineer these enzymes to aminoacylate suppressor tRNA 

(specific to the amber stop codon) with various unnatural amino acids. During positive 

selection, variants of an AARS engineered in the amino acid binding pocket are selected 

based on aminoacylation of the suppressor tRNA either with a natural amino acid (AA) or the 

chosen unnatural amino acid (UAA). Thus, any enzyme that effectively aminoacylates the 

suppresssor tRNA (with any amino acid) will permit read-through of the amber stop codon so 

that antibiotic resistance can be expressed. Subsequently, during negative selection, the 

UAA is omitted. This time, read-through of the stop codon will permit expression of a toxic 

gene (barnase or uracil phosphoribosyltransferase). Negative selection is carried out in the 

absence of the UAA, so that any clones that express AARS enzymes that aminoacylate with 

native amino acids will be killed, so leaving behind enzymes that aminoacylate only with the 

required UAA (Melançon & Schultz, 2009). 

 

4.2.2   FACS screening 

Fluorescence-activated cell sorting (FACS) is a cell-display and activity-based selection 

screening procedure that employs flow cytometry. It is an ultrahigh-throughput technique, 

capable of screening up to 108 mutants per day (Yang & Withers, 2009). FACS is also 

characterized by high sensitivity. FACS is suitable for screening enzymatic activity where 

production of fluorescence is feasible. As with any another screening, FACS relies on linking 

the genotype with phenotype. For comparison, an example used in engineering AARSs is 

again described. Here, amber stop codons were engineered into genes for both T7 RNA 
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polymerase and GFP under the control of a T7 promoter. Using genes for an orthogonal 

AARS/suppressor tRNA pair (i.e the suppressor tRNA is not recognised by host AARSs and 

the orthogonal AARS does not recognise the host tRNA), the amino acid binding pocket of 

the orthogonal AARS was engineered to bind UAAs. In this instance, two positive selections 

(rather than a positive then a negative selection) are employed. The first again involves 

chloramphenicol resistance as described previously (section 4.2.1), whilst the second relies 

on UAA aminoacylation of the suppressor tRNA to read though both the T7 RNA polymerase 

and the GFP genes, to generate a fluorescent signal detectable by FACS (Santoro, Wang, 

Herberich, King & Schultz, 2002). 

Alternative methods for FACS-based screening of gene/protein libraries have been reviewed 

recently (Xiao et al., 2014). 
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5. CONCLUSIONS 

The transition from low- to high-throughput protein engineering has enabled the creation of 

novel proteins in a myriad of applications and saturation mutagenesis plays an invaluable 

role within that sphere. However, the protocol selected to perform that saturation depends on 

several factors including the design of the library and the importance placed on the quality 

versus the complexity of library synthesis, as follows: 

i. how many codons are being targeted 

ii. whether full or partial saturation is required 

iii. whether or not controlled ratios of codons are required 

iv. importance of the quality of the retrieved product, versus 

v. the effort / expense involved in library synthesis 

The conflicting and synergistic features of these properties are examined herein. 

In the preceding sections of this review, it becomes fairly clear that degenerate saturation is 

of very limited or indeed no practical utility when saturating three or more codons in a library 

that is to be screened by biopanning (Figure 1), although its simplicity may be more 

attractive when screening enzyme libraries (section 4.2), where life/death rather than mass 

action (section 4.1) determines whether or not a protein is selected. In contrast, for small 

numbers of saturated codons (~1-3 codons), the near nondegenerate 22c-trick or the fully 

non-degenrate DC-Anaylzer / MDC-Analyzer used in conjunction with overlap PCR or 

QuikChange® mutagenesis (section 3.1) are attractive options owing to their simplicity of 

use and lack of relative expense. Indeed, the financial benefit of employing these 

methodologies in comparison with NNK/NNS has been examined recently (Acevedo-Rocha, 

Reetz & Nov, 2015). However, three saturated codons is the maximum exemplified for each 

of these techniques as described by the inventing authors (Kille et al., 2013; Tang et al., 

2012; Tang et al., 2014), presumably because the number of primers becomes 
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unmanageable for higher numbers or saturated positions and also because those primers 

are specific to individual saturation experiments.  

For higher numbers of saturated positions, a more complex strategy of nondegenerate 

saturation is required. ProxiMAX randomization has recently been used to target 24 

consecutive codons (Frigotto et al., 2015), whilst the maximum number of residues that can 

be targeted by SlonoMAX™ has not been defined by the inventors (Van den Brulle et al., 

2008), but is surely equal to that of ProxiMAX. Both of these techniques are expensive in 

terms of DNA synthesis, but the oligonucleotides involved may be consistently re-used, 

because everything except the saturated codons is removed by Type IIS restriction 

digestion, once the saturation protocol has been completed. Moreover, both offer the ability 

to define not only the precise residues encoded at each saturated position, but also the 

relative ratios of each codons at a saturated location, meaning that natural antibody libraries 

(for example) can be mimicked. In contrast, neither the 22c-trick (Kille et al., 2013) nor MDC-

Analyzer (Tang et al., 2014) offer that possibility, even with low numbers of saturated 

positions. Meanwhile DC-Analyzer (Tang et al., 2012) does allow the user to specify which 

amino acids are encoded, but not their relative proportions, because of the defined-

degenerate primer synthesis involved. 

Thus in the end, the selected method of saturation will come down to a decision about where 

the funds and effort are to be spent. Up-front investment in library synthesis is economically 

advantageous even when considering small libraries (Acevedo-Rocha, 2015). This effect 

can only be amplified when screening large (>109 protein libraries). Here, even the expense 

of having a gene library synthesized commercially must pale into insignificance in 

comparison with screening costs of examining so many components via a biopanning 

strategy. More serious still is the possibility of taking forward a sub-optimal candidate protein 

that was identified because the library from which it was identified contained poor diversity. 

The relative expense of such a mistake is hard to calculate.  
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Figure 1: Comparison of performance of common saturation mutagenesis techniques 

Green coloration indicates ideal performance; pale pink coloration indicates tolerable 

performance and deep pink coloration indicates unacceptable performance, where 

nondegenerate methodsa may be created via various methodologies as described in section 

3. a) Diversity was calculated using the formula d=1/(N∑kpk
2) (Makowski & Soares, 2003) 

and is in agreement for a 12-mer peptide saturated with codon NNN (Krumpe, Schumacher, 

McMahon, Makowski. & Mori, 2007). b) Ratios represent the theoretical relative 

concentrations of each individual gene combining any of the most common codons 

(Leu/Arg/Ser, NNN/NNK; or Leu/Val, 22c trick) versus each individual gene containing any 

combination of the rarest codons (Met/Trp, NNN; 

Cys/Asp/Glu/Phe/His/Ile/Lys/Met/Asn/Gln/Trp/Tyr, NNK; or 18 codons (omitting Leu/Val), 

22c trick). c) Truncation is calculated as the percentage of sequences that contain 1 or more 

termination codons within the saturated region. Reproduced in part from Ashraf, M., Frigotto, 

L., Smith, M.E., Patel, S., Hughes, M.D., Poole, A.J., et al. (2013). ProxiMAX randomization: 

a new technology for nondegenerate saturation mutagenesis of contiguous codons. 

Biochemical Society Transactions, 41, 1189–1194 under the Creative Commons Attribution 

License (CC-BY).  
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Figure 2: Overview of the MAX Randomization technique (Hughes et al., 2003) 

A single template oligonucleotide is synthesized that is fully-degenerate at the designated, 

saturated codons. Meanwhile, a set of up to 20 small selection oligonucleotides are 

synthesised individually, for each saturated position. Each selection oligonucleotide consists 

of a short (typically in the order of 6bp) addressing region that is fully-complementary to the 

template and one MAX codon, where a MAX codon is the favoured codon for a single amino 

acid in the organism of interest. The selection oligonucleotides are mixed as required and 

alongside two terminal oligonucleotides, are hybridised with the template and ligated 

together. The ligated strand is then selectively amplified with primers complementary to the 

terminal oligonucleotides, to generate a randomization cassette. 
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Figure 3: Overview of the ProxiMAX randomisation process. 

Double-stranded DNA donors, carrying the required ‘MAX’ codons at their termini, are 

ligated on to a double-stranded DNA acceptor sequence (phosphorylated at the required 5’ 

end only). The donors can take the form of partially double-stranded DNA, fully double-

stranded DNA or hairpin oligonucleotides (as shown). After ligation, the products are 

amplified by PCR. Depending on whether the process is performed with automation or 

manually, the donor oligonucleotides can either be combined before or after ligation, with the 

automated process substantially reducing the number of steps involved and permitting the 

use of hexanucleotide donors as required (Frigotto et al., 2015). The amplified, purified 

product is then digested with MlyI and the process repeated, using the digestion product 

from round 1 as the acceptor for the next round of ligation. Different sets of donor 

oligonucleotides (up to 20 independently-synthesized, double-stranded oligonucleotides) are 

cycled to prevent potential carry-over from one round of addition to the next. Adapted from 

Adapted from Ashraf, M., Frigotto, L., Smith, M.E., Patel, S., Hughes, M.D., Poole, A.J., et al. 

(2013). ProxiMAX randomization: a new technology for nondegenerate saturation 

mutagenesis of contiguous codons. Biochemical Society Transactions, 41, 1189–1194. 
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Figure 4: Overview of the Slonomics® process (Van den Brulle et al., 2008; Waldmann 

2006; Waldmann, 2013). 

Hairpin splinker oligonucleotides are joined, via sticky-ended ligation, to a mixture of hairpin 

anchor oligonucleotides. The ligated product is then immobilised via a biotin moiety 

contained within the anchors, washed and digested with Type IIS restriction enzyme 

Eam1104I, which generates a three-base sticky ended overhang. The resulting extended 

splinker, which is now free in solution, enters the next round of addition. Up to six rounds of 

addition are performed to generate an “elongation block” and several elongation blocks may 

be joined together via further Type IIS digestion and subsequent ligation (Van den Brulle et 

al., 2008). No PCR amplification is involved in the process. 
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Figure 5: Overview of CIS display. 

Adapted from Odegrip et al., 2004. Double-standed DNA is generated consisting of (in 5’  

3’ order) a promoter, the saturated library fused in-frame to repA, the CIS element and the 

ori sequence. The DNA is then subject to coupled in vitro transcription/translation using an 

E. coli S-30 extract. Transcription pauses when RNA polymerase reaches the CIS element. 

Meanwhile translation of the newly-produced mRNA produces a library component/RepA 

fusion protein that binds to the ori sequence, so linking the protein to its encoding gene. The 

resulting complex is screened via biopanning. Adapted from Odegrip, R., Coomber, D., 

Eldridge, B., Hederer, R., Kuhlman, P.A., Ullman, C. et al. (2004). CIS display: In vitro 

selection of peptides from libraries of protein–DNA complexes. Proceedings of the National 

Academy of Sciences USA., 101, 2806-2810. 

 


