641 research outputs found

    Downstream transport processes modulate the effects of environmental heterogeneity on riverine phytoplankton

    Get PDF
    Environmental heterogeneity (EH) in space and time promotes niche-partition, which leads to high variation in biological communities, such as in algae. In streams, EH is highly related to the intensity of the water flow and may lead to community variation mainly during the low flow conditions. Despite the wide knowledge on the responses of phytoplankton communities to EH in lentic and semi-lentic systems, studies of riverine phytoplankton community variation are still scarce. Here, we first investigated the relationship between phytoplankton community variation and EH in different courses of the river and between seasons. We expected that under low or intermediate flow conditions, there is a positive correlation between community variation and EH. Alternatively, we did not expect any relationship between EH and community variation under high flow condition because stronger downstream transport would mask environmental filtering. We sampled nine sites monthly (May 2012 to April 2013) in a tropical river of Brazilian Southeast. We calculated EH from abiotic data whereas for community variation, here community distinctiveness (CD), we used Sorensen (CDSor) and Bray-Curtis (CDBray) dissimilarities. Differences in EH, CDSor and CDBray were tested at between-season and among-course levels. We found lower distinctiveness during the dry season when EH was the highest. Contrastingly, phytoplankton CD was the highest even when EH was low during the wet season. We found that this pattern raised from the increasing in individuals dispersal during the wet season, promoting mass effects. Finally, our results thus reject the first hypothesis and show a negative relationship between EH and distinctiveness. However, results support our alternative hypothesis and show that during the wet season, distinctiveness is not driven by EH. These results provide new insights into how EH drives community variation, being useful for both basic research about riverine algal communities and biomonitoring programs using phytoplankton communities as bioindicators. (C). 2019 Elsevier B.V. All rights reserved.Peer reviewe

    Responses of Functional and Taxonomic Phytoplankton Diversity to Environmental Gradients in Subtropical and Tropical Reservoirs

    Get PDF
    Understanding the influence of environmental conditions on biodiversity is a major task in ecology. We investigated how phytoplankton taxonomic (TD) and functional (FD) diversities vary with environmental factors in eight subtropical and tropical reservoirs. We hypothesized that i) environmental variables affect phytoplankton TD and FD; ii) FD provides better relationships to environmental changes than TD, and; iii) indices based on biomass are better related to the environment than those based on identities. The relationships between phytoplankton diversities and environmental drivers were assessed through generalized linear models. Our hypotheses were partly confirmed. TD and FD were, in fact, dependent on the environment, with higher values occurring in warmer, clearer, and more enriched systems, under lower zooplankton grazing pressure; but FD based on identities was not predicted better from environmental conditions than TD based on identities. As expected, indices based on biomass are better related to the environment than their counterpart based on identities

    Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation.

    Get PDF
    Metastatic prostate cancer is lethal and lacks effective strategies for prevention or treatment, requiring novel therapeutic approaches. Interleukin-6 (IL-6) is a cytokine that has been linked with prostate cancer pathogenesis by multiple studies. However, the direct functional roles of IL-6 in prostate cancer growth and progression have been unclear. In the present study, we show that IL-6 is produced in distant metastases of clinical prostate cancers. IL-6-activated signaling pathways in prostate cancer cells induced a robust 7-fold increase in metastases formation in nude mice. We further show that IL-6 promoted migratory prostate cancer cell phenotype, including increased prostate cancer cell migration, microtubule reorganization, and heterotypic adhesion of prostate cancer cells to endothelial cells. IL-6-driven metastasis was predominantly mediated by Stat3 and to lesser extent by ERK1/2. Most importantly, pharmacologic inhibition of Jak1/2 by AZD1480 suppressed IL-6-induced signaling, migratory prostate cancer cell phenotypes, and metastatic dissemination of prostate cancer in vivo in nude mice. In conclusion, we demonstrate that the cytokine IL-6 directly promotes prostate cancer metastasis in vitro and in vivo via Jak-Stat3 signaling pathway, and that IL-6-driven metastasis can be effectively suppressed by pharmacologic targeting of Jak1/2 using Jak1/2 inhibitor AZD1480. Our results therefore provide a strong rationale for further development of Jak1/2 inhibitors as therapy for metastatic prostate cancer

    Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity.

    Get PDF
    Most monogenic cases of obesity in humans have been linked to mutations in genes encoding members of the leptin-melanocortin pathway. Specifically, mutations in MC4R, the melanocortin-4 receptor gene, account for 3-5% of all severe obesity cases in humans1-3. Recently, ADCY3 (adenylyl cyclase 3) gene mutations have been implicated in obesity4,5. ADCY3 localizes to the primary cilia of neurons 6 , organelles that function as hubs for select signaling pathways. Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive pleiotropic diseases in which obesity is a cardinal manifestation 7 . We demonstrate that MC4R colocalizes with ADCY3 at the primary cilia of a subset of hypothalamic neurons, that obesity-associated MC4R mutations impair ciliary localization and that inhibition of adenylyl cyclase signaling at the primary cilia of these neurons increases body weight. These data suggest that impaired signaling from the primary cilia of MC4R neurons is a common pathway underlying genetic causes of obesity in humans

    An open resource combining multi-contrast MRI and microscopy in the macaque brain

    Get PDF
    Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available

    Efficacy of hyaluronic acid binding assay in selecting motile spermatozoa with normal morphology at high magnification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study aimed to evaluate the efficacy of the hyaluronic acid (HA) binding assay in the selection of motile spermatozoa with normal morphology at high magnification (8400x).</p> <p>Methods</p> <p>A total of 16592 prepared spermatozoa were selected and classified into two groups: Group I, spermatozoa which presented their head attached to an HA substance (HA-bound sperm), and Group II, those spermatozoa that did not attach to the HA substance (HA-unbound sperm). HA-bound and HA-unbound spermatozoa were evaluated according to the following sperm forms: 1-Normal morphology: normal nucleus (smooth, symmetric and oval configuration, length: 4.75+/-2.8 μm and width: 3.28+/-0.20 μm, no extrusion or invagination and no vacuoles occupied more than 4% of the nuclear area) as well as acrosome, post-acrosomal lamina, neck, tail, besides not presenting a cytoplasmic droplet or cytoplasm around the head; 2-Abnormalities of nuclear form (a-Large/small; b-Wide/narrow; c-Regional disorder); 3-Abnormalities of nuclear chromatin content (a-Vacuoles: occupy >4% to 50% of the nuclear area and b-Large vacuoles: occupy >50% of the nuclear area) using a high magnification (8400x) microscopy system.</p> <p>Results</p> <p>No significant differences were obtained with respect to sperm morphological forms and the groups HA-bound and HA-unbound. 1-Normal morphology: HA-bound 2.7% and HA-unbound 2.5% (P = 0.56). 2-Abnormalities of nuclear form: a-Large/small: HA-bound 1.6% vs. HA-unbound 1.6% (P = 0.63); b-Wide/narrow: HA-bound 3.1% vs. HA-unbound 2.7% (P = 0.13); c-Regional disorders: HA-bound 4.7% vs. HA-unbound 4.4% (P = 0.34). 3. Abnormalities of nuclear chromatin content: a-Vacuoles >4% to 50%: HA-bound 72.2% vs. HA-unbound 72.5% (P = 0.74); b-Large vacuoles: HA-bound 15.7% vs. HA-unbound 16.3% (P = 0.36).</p> <p>Conclusions</p> <p>The findings suggest that HA binding assay has limited efficacy in selecting motile spermatozoa with normal morphology at high magnification.</p

    The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Get PDF
    Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume) of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone=1.5 to 5 m, euphotic zone/mixing zone ratio 1.5). Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C). Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in temperature. Predictive models that consider only temperature as a drive factor can therefore fail in predicting the expansion of this potentially toxic cyanobacterium

    PHYTOPLANKTON BIOMASS INCREASES IN A SILT-IMPACTED AREA IN AN AMAZONIAN FLOOD-PLAIN LAKE OVER 15 YEARS

    Get PDF
    Funding Information: We thank Mineração Rio do Norte S.A. and Limnologia/UFRJ for fieldwork support, Dr. Janet W. Reid (JWR Associates) for language revision, and Leonardo Preza Rodrigues for map charting. VLMH, JCN, FAE, RLB, and FR are partially supported by the National Council for Scientific and Technological Development (CNPq), Brazil, RLB, and FAE by FAPERJ, Brazil, and CGR financially supported by Sakari Alhopuro Foundation, Finland. Publisher Copyright: © 2022, Universidade Federal do Rio de Janeiro. All rights reserved.Tailings from bauxite mining in Porto Trombetas (Pará state, Central Amazonia, Brazil) was discharged (1979–1989) into Batata Lake affecting about 30% of its area. The lake belongs to a clear-water flood-plain system along the Trombetas River, a tributary of the Amazon River. Siltation is the main perceived factor impacting aquatic and flooded communities. Besides natural regeneration, a program to restore a section of igapó forest in the impacted area (IA) has been conducted since 1991. Decreased light is the main factor reducing total phytoplankton biomass (PhyBM) in IA. We hypothesized that PhyBM in IA increases over time because of the improvement of the underwater light conditions due to the natural regeneration and restoration. We sampled quarterly PhyBM and limnological variables (depth, transparency, temperature, pH, conductivity, dissolved oxygen, turbidity, suspended solids, total Kjeldahl nitrogen, and total phosphorus), over 15 years (2005–2019) at eight sampling sites in the two areas (N = 349). We also obtained daily climatic and hydrologic data. PhyBM was higher in NIA than in IA. The temporal trend in the annual mean of PhyBM increased significantly over time only in the IA, approximating the NIA values, confirming our general hypothesis. The increase of PhyBM in the IA was negatively related to the residual light attenuation caused by non-phytoplankton turbidity and to total phosphorus, and positively to air temperature and site depth (p < 0.05; Marginal r2 = 0.18; Conditional r2 = 0.29). Instead, in NIA, PhyBM was explained only by the increase in air temperature (p < 0.05; Marginal r2 = 0.15; Conditional r2 = 0.34). We concluded that the PhyBM in the IA positively responds to the synergy between increasing light availability, air temperature, and site depth, and decreasing total phosphorus concentrations, regardless of hydrologic phase.Peer reviewe

    Brain Apolipoprotein E: an Important Regulator of Food Intake in Rats

    Get PDF
    OBJECTIVE—The worldwide prevalence of obesity is increasing at an alarming rate, along with the associated increased rates of type 2 diabetes, heart disease, and some cancers. While efforts to address environmental factors responsible for the recent epidemic must continue, investigation into the anorectic functions of potential molecules we present here, such as apolipoprotein (apo)E, offers exciting possibilities for future development of successful anti-obesity therapies
    corecore