92 research outputs found

    Xenoestrogens from Household Plastics Bind Estrogen Receptors and Affect Cell Proliferation

    Get PDF
    Xenoestrogens are “foreign” chemicals or compounds that interact with estrogen receptors as either agonists or antagonists to interfere with endocrine system function. Xenoestrogens include phytoestrogens, pesticides, industrial by- products and synthetic estrogens. In this study, consumer plasticware, including baby bottles and food storage containers, were found to release xenoestrogenic compounds that bound to ERα and ERβ and affected cell proliferation

    A Novel Dynamic Impact Approach (DIA) for Functional Analysis of Time-Course Omics Studies: Validation Using the Bovine Mammary Transcriptome

    Get PDF
    The overrepresented approach (ORA) is the most widely-accepted method for functional analysis of microarray datasets. The ORA is computationally-efficient and robust; however, it suffers from the inability of comparing results from multiple gene lists particularly with time-course experiments or those involving multiple treatments. To overcome such limitation a novel method termed Dynamic Impact Approach (DIA) is proposed. The DIA provides an estimate of the biological impact of the experimental conditions and the direction of the impact. The impact is obtained by combining the proportion of differentially expressed genes (DEG) with the log2 mean fold change and mean –log P-value of genes associated with the biological term. The direction of the impact is calculated as the difference of the impact of up-regulated DEG and down-regulated DEG associated with the biological term. The DIA was validated using microarray data from a time-course experiment of bovine mammary gland across the lactation cycle. Several annotation databases were analyzed with DIA and compared to the same analysis performed by the ORA. The DIA highlighted that during lactation both BTA6 and BTA14 were the most impacted chromosomes; among Uniprot tissues those related with lactating mammary gland were the most positively-impacted; within KEGG pathways ‘Galactose metabolism’ and several metabolism categories related to lipid synthesis were among the most impacted and induced; within Gene Ontology “lactose biosynthesis” among Biological processes and “Lactose synthase activity” and “Stearoyl-CoA 9-desaturase activity” among Molecular processes were the most impacted and induced. With the exception of the terms ‘Milk’, ‘Milk protein’ and ‘Mammary gland’ among Uniprot tissues and SP_PIR_Keyword, the use of ORA failed to capture as significantly-enriched (i.e., biologically relevant) any term known to be associated with lactating mammary gland. Results indicate the DIA is a biologically-sound approach for analysis of time-course experiments. This tool represents an alternative to ORA for functional analysis

    Old and New Stories: Revelations from Functional Analysis of the Bovine Mammary Transcriptome during the Lactation Cycle

    Get PDF
    The cow mammary transcriptome was explored at −30, −15, 1, 15, 30, 60, 120, 240, and 300 d relative to parturition. A total of 6,382 differentially expressed genes (DEG) at a false discovery rate ≤0.001 were found throughout lactation. The greatest number of DEG (>3,500 DEG) was observed at 60 and 120 d vs. −30 d with the largest change between consecutive time points observed at −15 vs. 1 d and 120 vs. 240 d. Functional analysis of microarray data was performed using the Dynamic Impact Approach (DIA). The DIA analysis of KEGG pathways uncovered as the most impacted and induced ‘Galactose metabolism’, ‘Glycosylphosphatidylinositol (GPI)-anchor biosynthesis’, and ‘PPAR signaling’; whereas, ‘Antigen processing and presentation’ was among the most inhibited. The integrated interpretation of the results suggested an overall increase in metabolism during lactation, particularly synthesis of carbohydrates and lipid. A marked degree of utilization of amino acids as energy source, an increase of protein export, and a decrease of the protein synthesis machinery as well cell cycle also were suggested by the DIA analysis. The DIA analysis of Gene Ontology and other databases uncovered an induction of Golgi apparatus and angiogenesis, and the inhibition of both immune cell activity/migration and chromosome modifications during lactation. All of the highly-impacted and activated functions during lactation were evidently activated at the onset of lactation and inhibited when milk production declined. The overall analysis indicated that the bovine mammary gland relies heavily on a coordinated transcriptional regulation to begin and end lactation. The functional analysis using DIA underscored the importance of genes associated with lactose synthesis, lipid metabolism, protein synthesis, Golgi, transport, cell cycle/death, epigenetic regulation, angiogenesis, and immune function during lactation

    Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The neonatal bovine mammary fat pad (<b>MFP</b>) surrounding the mammary parenchyma (<b>PAR</b>) is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other.</p> <p>Results</p> <p>Over 9,000 differentially expressed genes (<b>DEG</b>; False discovery rate ≤ 0.05) were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736) we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742) belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of <it>MYC</it>, <it>TP53</it>, and <it>CTNNB1 </it>in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for <it>PPARG</it>, <it>KLF2</it>, <it>EGR2</it>, and <it>EPAS1 </it>in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., <it>ANGPTL1</it>, <it>SPP1</it>, <it>IL1B </it>in PAR vs. MFP; <it>ADIPOQ</it>, <it>IL13</it>, <it>FGF2</it>, <it>LEP </it>in MFP vs. PAR) with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., <it>MYC</it>, <it>TP53</it>, and actin cytoskeletal signaling in PAR vs. MFP; <it>PPARG </it>and LXR/RXR Signaling in MFP vs. PAR).</p> <p>Conclusions</p> <p>Functional analyses underscored a reciprocal influence in determining the biological features of MFP and PAR during neonatal development. This was exemplified by the potential effect that the signaling molecules (cytokines, growth factors) released preferentially (i.e., more highly-expressed) by PAR or MFP could have on molecular functions or signaling pathways enriched in the MFP or PAR. These bidirectional interactions might be required to coordinate mammary tissue development under normal circumstances or in response to nutrition.</p

    Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-β

    Get PDF
    BACKGROUND: XIAP-associated factor 1 (XAF1) is a putative tumor suppressor that exerts its proapoptotic effects through both caspase-dependent and – independent means. Loss of XAF1 expression through promoter methylation has been implicated in the process of tumorigenesis in a variety of cancers. In this report, we investigated the role of basal xaf1 promoter methylation in xaf1 expression and assessed the responsiveness of cancer cell lines to XAF1 induction by IFN-β. METHODS: We used the conventional bisulfite DNA modification and sequencing method to determine the methylation status in the CpG sites of xaf1 promoter in glioblastoma (SF539, SF295), neuroblastoma (SK-N-AS) and cervical carcinoma (HeLa) cells. We analysed the status and incidence of basal xaf1 promoter methylation in xaf1 expression in non-treated cells as well as under a short or long exposure to IFN-β. Stable XAF1 glioblastoma knock-down cell lines were established to characterize the direct implication of XAF1 in IFN-β-mediated sensitization to TRAIL-induced cell death. RESULTS: We found a strong variability in xaf1 promoter methylation profile and responsiveness to IFN-β across the four cancer cell lines studied. At the basal level, aberrant promoter methylation was linked to xaf1 gene silencing. After a short exposure, the IFN-β-mediated reactivation of xaf1 gene expression was related to the degree of basal promoter methylation. However, in spite of continued promoter hypermethylation, we find that IFN-β induced a transient xaf1 expression, that in turn, was followed by promoter demethylation upon a prolonged exposure. Importantly, we demonstrated for the first time that IFN-β-mediated reactivation of endogenous XAF1 plays a critical role in TRAIL-induced cell death since XAF1 knock-down cell lines completely lost their IFN-β-mediated TRAIL sensitivity. CONCLUSION: Together, these results suggest that promoter demethylation is not the sole factor determining xaf1 gene induction under IFN-β treatment. Furthermore, our study provides evidence that XAF1 is a crucial interferon-stimulated gene (ISG) mediator of IFN-induced sensitization to TRAIL in cancer

    Effectiveness of a childhood obesity prevention programme delivered through schools, targeting 6 and 7 year olds: cluster randomised controlled trial (WAVES study).

    Get PDF
    OBJECTIVE: To assess the effectiveness of a school and family based healthy lifestyle programme (WAVES intervention) compared with usual practice, in preventing childhood obesity. DESIGN: Cluster randomised controlled trial. SETTING: UK primary schools from the West Midlands. PARTICIPANTS: 200 schools were randomly selected from all state run primary schools within 35 miles of the study centre (n=980), oversampling those with high minority ethnic populations. These schools were randomly ordered and sequentially invited to participate. 144 eligible schools were approached to achieve the target recruitment of 54 schools. After baseline measurements 1467 year 1 pupils aged 5 and 6 years (control: 28 schools, 778 pupils) were randomised, using a blocked balancing algorithm. 53 schools remained in the trial and data on 1287 (87.7%) and 1169 (79.7%) pupils were available at first follow-up (15 month) and second follow-up (30 month), respectively. INTERVENTIONS: The 12 month intervention encouraged healthy eating and physical activity, including a daily additional 30 minute school time physical activity opportunity, a six week interactive skill based programme in conjunction with Aston Villa football club, signposting of local family physical activity opportunities through mail-outs every six months, and termly school led family workshops on healthy cooking skills. MAIN OUTCOME MEASURES: The protocol defined primary outcomes, assessed blind to allocation, were between arm difference in body mass index (BMI) z score at 15 and 30 months. Secondary outcomes were further anthropometric, dietary, physical activity, and psychological measurements, and difference in BMI z score at 39 months in a subset. RESULTS: Data for primary outcome analyses were: baseline, 54 schools: 1392 pupils (732 controls); first follow-up (15 months post-baseline), 53 schools: 1249 pupils (675 controls); second follow-up (30 months post-baseline), 53 schools: 1145 pupils (621 controls). The mean BMI z score was non-significantly lower in the intervention arm compared with the control arm at 15 months (mean difference -0.075 (95% confidence interval -0.183 to 0.033, P=0.18) in the baseline adjusted models. At 30 months the mean difference was -0.027 (-0.137 to 0.083, P=0.63). There was no statistically significant difference between groups for other anthropometric, dietary, physical activity, or psychological measurements (including assessment of harm). CONCLUSIONS: The primary analyses suggest that this experiential focused intervention had no statistically significant effect on BMI z score or on preventing childhood obesity. Schools are unlikely to impact on the childhood obesity epidemic by incorporating such interventions without wider support across multiple sectors and environments. TRIAL REGISTRATION: Current Controlled Trials ISRCTN97000586.This study was funded by the National Institute for Health Research (NIHR) Health Technology Assessment Programme (project reference No 06/85/11)

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Pain in elderly people with severe dementia: A systematic review of behavioural pain assessment tools

    Get PDF
    BACKGROUND: Pain is a common and major problem among nursing home residents. The prevalence of pain in elderly nursing home people is 40–80%, showing that they are at great risk of experiencing pain. Since assessment of pain is an important step towards the treatment of pain, there is a need for manageable, valid and reliable tools to assess pain in elderly people with dementia. METHODS: This systematic review identifies pain assessment scales for elderly people with severe dementia and evaluates the psychometric properties and clinical utility of these instruments. Relevant publications in English, German, French or Dutch, from 1988 to 2005, were identified by means of an extensive search strategy in Medline, Psychinfo and CINAHL, supplemented by screening citations and references. Quality judgement criteria were formulated and used to evaluate the psychometric aspects of the scales. RESULTS: Twenty-nine publications reporting on behavioural pain assessment instruments were selected for this review. Twelve observational pain assessment scales (DOLOPLUS2; ECPA; ECS; Observational Pain Behavior Tool; CNPI; PACSLAC; PAINAD; PADE; RaPID; Abbey Pain Scale; NOPPAIN; Pain assessment scale for use with cognitively impaired adults) were identified. Findings indicate that most observational scales are under development and show moderate psychometric qualities. CONCLUSION: Based on the psychometric qualities and criteria regarding sensitivity and clinical utility, we conclude that PACSLAC and DOLOPLUS2 are the most appropriate scales currently available. Further research should focus on improving these scales by further testing their validity, reliability and clinical utility

    An intriguing shift occurs in the novel protein phosphatase 1 binding partner, TCTEX1D4: evidence of positive selection in a pika model

    Get PDF
    T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) contains the canonical phosphoprotein phosphatase 1 (PPP1) binding motif, composed by the amino acid sequence RVSF. We identified and validated the binding of TCTEX1D4 to PPP1 and demonstrated that indeed this protein is a novel PPP1 interacting protein. Analyses of twenty-one mammalian species available in public databases and seven Lagomorpha sequences obtained in this work showed that the PPP1 binding motif 90RVSF93 is present in all of them and is flanked by a palindromic sequence, PLGS, except in three species of pikas (Ochotona princeps, O. dauurica and O. pusilla). Furthermore, for the Ochotona species an extra glycosylation site, motif 96NLS98, and the loss of the palindromic sequence were observed. Comparison with other lagomorphs suggests that this event happened before the Ochotona radiation. The dN/dS for the sequence region comprising the PPP1 binding motif and the flanking palindrome highly supports the hypothesis that for Ochotona species this region has been evolving under positive selection. In addition, mutational screening shows that the ability of pikas TCTEX1D4 to bind to PPP1 is maintained, although the PPP1 binding motif is disrupted, and the N- and C-terminal surrounding residues are also abrogated. These observations suggest pika as an ideal model to study novel PPP1 complexes regulatory mechanisms.publishe

    Transcriptomics Comparison between Porcine Adipose and Bone Marrow Mesenchymal Stem Cells during In Vitro Osteogenic and Adipogenic Differentiation

    Get PDF
    Bone-marrow mesenchymal stem cells (BMSC) are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC). The abundance and ease of harvest make the adipose-derived stem cells (ASC) an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition, functional analysis data might indicate differences in therapeutic application
    corecore