12 research outputs found

    Accessibility, settlement dispersion, and unemployment in Slovakia

    Get PDF
    The thesis examines the relationship between accessibility and unemployment and the relationship between settlement dispersion and unemployment in Slovakia. The two main hypotheses are as follows: First, the settlements with lower accessibility have higher rates of unemployment. Second, because the areas of dispersed settlement most likely experience poor accessibility, these areas have also higher rates of unemployment. While Slovakia is the main study area, additional analysis is conducted in the case-study region of the Myjava and Skalica Counties in the western part of Slovakia. Several methods are used to evaluate accessibility and settlement dispersion. Container approach and distance approach are the two approaches used to assess accessibility. Traditional method and kernel method of settlement density measurement are the two methods used to assess settlement dispersion. Correlation analyses and testing of their results for significance are the last two steps in the methodological design. Major findings and suggestions for further research of accessibility, settlement dispersion and unemployment are summarized at the end of the study

    Accuracy of the soil sealing enhancement product for Poland

    Get PDF
    Increasing urbanization results in constant enlarging of the artificial area closed to water infiltration. In 2006–2008, the Soil Sealing Enhancement (SSE) database was the part of the GMES Fast Track Service on Land Monitoring. The accuracy of the final product set by the authors should reach at least 85%. Orthorectified high resolution aerial photos of Poland were used to develop reference data constituting 20,000 random samples around the country. In each sample, the points were classified into three possible surface classes: natural, artificial and semi-sealed. Comparison of reference data to original project statistics revealed the values of accuracy, commission and omission errors in the SSE dataset. Although, SSE accuracy in Poland fulfils the criteria set by SSE authors with overall accuracy of 99.5%, the individual analysis for each category reveals many weaknesses. Preliminary interpretation of mistakes leads to the conclusion that the spatial resolution of pictures used in the SSE project is insufficient. In several cases, validation proved that omission errors were made in relation to construction sites or recently constructed buildings. It should be stated that the accuracy of SSE product for Poland should be treated as the maximum value of impervious surfaces

    Accuracy of the Soil Sealing Enhancement Product for Poland

    No full text
    Increasing urbanization results in constant enlarging of the artificial area closed to water infiltration. In 2006–2008, the Soil Sealing Enhancement (SSE) database was the part of the GMES Fast Track Service on Land Monitoring. The accuracy of the final product set by the authors should reach at least 85%. Orthorectified high resolution aerial photos of Poland were used to develop reference data constituting 20,000 random samples around the country. In each sample, the points were classified into three possible surface classes: natural, artificial and semi-sealed. Comparison of reference data to original project statistics revealed the values of accuracy, commission and omission errors in the SSE dataset. Although, SSE accuracy in Poland fulfils the criteria set by SSE authors with overall accuracy of 99.5%, the individual analysis for each category reveals many weaknesses. Preliminary interpretation of mistakes leads to the conclusion that the spatial resolution of pictures used in the SSE project is insufficient. In several cases, validation proved that omission errors were made in relation to construction sites or recently constructed buildings. It should be stated that the accuracy of SSE product for Poland should be treated as the maximum value of impervious surfaces

    Accuracy of the soil sealing enhancement product for Poland

    No full text
    Increasing urbanization results in constant enlarging of the artificial area closed to water infiltration. In 2006–2008, the Soil Sealing Enhancement (SSE) database was the part of the GMES Fast Track Service on Land Monitoring. The accuracy of the final product set by the authors should reach at least 85%. Orthorectified high resolution aerial photos of Poland were used to develop reference data constituting 20,000 random samples around the country. In each sample, the points were classified into three possible surface classes: natural, artificial and semi-sealed. Comparison of reference data to original project statistics revealed the values of accuracy, commission and omission errors in the SSE dataset. Although, SSE accuracy in Poland fulfils the criteria set by SSE authors with overall accuracy of 99.5%, the individual analysis for each category reveals many weaknesses. Preliminary interpretation of mistakes leads to the conclusion that the spatial resolution of pictures used in the SSE project is insufficient. In several cases, validation proved that omission errors were made in relation to construction sites or recently constructed buildings. It should be stated that the accuracy of SSE product for Poland should be treated as the maximum value of impervious surfaces
    corecore