661 research outputs found

    Absence of autoantibodies against correctly folded recombinant fibrillin-1 protein in systemic sclerosis patients

    Get PDF
    Autoantibodies against short recombinant fragments of fibrillin-1 produced in bacterial expression systems have been found in tight-skin mouse, systemic sclerosis, mixed connective tissue disease, and primary pulmonary hypertension syndrome. In patients with scleroderma, the frequency of anti-fibrillin-1 antibodies was 42% in Caucasians. Until now it has been unclear whether this immune response has a primary function in disease pathogenesis or is a secondary phenomenon. In the present study we analyzed the frequency of autoantibodies against two overlapping recombinant polypeptides spanning the N-terminal and C-terminal halves of human fibrillin-1, which were produced in human embryonic kidney (HEK-293) cells. Correct three-dimensional structures of the recombinant fibrillin-1 polypeptides were shown by electron microscopy and immunoreactivity with antibodies. Screening of fibrillin-1 antibodies was performed in 41 sera from systemic sclerosis patients and in 44 healthy controls with a Caucasian background. Microtiter plates were coated with the recombinant polypeptides of fibrillin-1 and incubated with 1:100 diluted sera. Positive binding was defined as being more than 2 SD above the mean of the control group. ELISAs showed that none of the sera of patients with systemic sclerosis contained autoantibodies against the N-terminal or C-terminal recombinant fibrillin-1 polypeptide. The data show the absence of autoantibodies against recombinant fibrillin-1 protein in Caucasian systemic sclerosis patients. Because the correct three-dimensional folding of the recombinant proteins has been substantiated by several independent methods, we conclude that autoantibodies against correctly folded fibrillin are not a primary phenomenon in the pathogenesis of systemic sclerosis

    Targeted Immunotherapy with Rituximab Leads to a Transient Alteration of the IgG Autoantibody Profile in Pemphigus Vulgaris

    Get PDF
    In pemphigus vulgaris (PV), IgG autoantibodies against the ectodomain of desmoglein 3 (Dsg3) have been shown to be directly responsible for the loss of keratinocyteadhesion. The aim of the present study was to study the effect of the B cell depleting anti-CD20 monoclonal antibody, rituximab, on the profile of pathogenic IgG against distinct regions of the Dsg3 ectodomain in 22 PV patients who were followed up clinically and serologically by Dsg3 ELISA over 12-24 months. Prior to rituximab, all the 22 PV patients showed IgG against Dsg3 (Dsc3EC1-5). Specifically, 14/22 showed IgG reactivity against the Dsg3EC1 subdomain, 5/22 patients against Dsg3EC2, 7/22 against Dsg3EC3, 11/22 against Dsg3EC4, and 2/22 against Dsg3EC5. Within 6 months after rituximab, all the patients showed significant clinical improvement and reduced IgG against Dsg3 (5/22) and the various subdomains, that is, Dsg3EC1 (7/22), Dsg3EC2 (3/22), Dsg3EC3 (2/22), sg3EC4 (2/22), and Dsg3EC5 (0/22). During the entire observation period, 6/22 PV patients experienced a clinical relapse which was associated with the reappearance of IgG against previously recognized Dsg3 subdomains, particularly against the Dsg3EC1. Thus, in PV, rituximab only temporarily depletes pathogenic B cell responses against distinct subdomains of Dsg3 which reappear upon clinical relapse

    Pathophysiological Mechanisms in Sclerosing Skin Diseases

    Get PDF
    Sclerosing skin diseases represent a large number of distinct disease entities, which include systemic sclerosis, localized scleroderma, and scleredema adultorum. These pathologies have a common clinical appearance and share histological features. However, the specific interplay between cytokines and growth factors, which activate different mesenchymal cell populations and production of different extracellular matrix components, determines the biomechanical properties of the skin and the clinical features of each disease. A better understanding of the mechanisms underlying these events is prerequisite for developing novel targeted therapeutic approaches

    Registries in systemic sclerosis: a worldwide experience

    Get PDF
    SSc is a multisystem disease characterized by an unpredictable course, high mortality and resistance to therapy. The complexity and severity of SSc is a growing burden on the health-care systems. As a result, researchers are seeking new therapeutic strategies for effectively managing these patients. Disease registries are used to support care management efforts for groups of patients with chronic diseases and are meaningful to capture and track key patient information to assist the physicians in managing patients. For these reasons, SSc surveys, research associations and consortiums are pivotal to conduct ongoing research and data collection to enhance disease knowledge and support research projects. Currently, there are several national SSc registries in the UK, Germany, USA, Canada, Brazil and Australia. There is also an international registry established by the European League Against Rheumatism scleroderma trial and research (EUSTAR) called minimal essential data set (MEDS) Online, which collects data from over 8000 patients from 92 centres worldwide, including 21 European centres and 9 centres outside Europe. By collecting, analysing and disseminating data on disease progression and patient responses to long-term disease management strategies, registries help to improve understanding of the disease and keep medical professionals up to date on the latest advance

    The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific

    A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort

    Get PDF
    <p><b>Objectives</b> The aim of this study was to confirm the influence of TNFSF4 polymorphisms on systemic sclerosis (SSc) susceptibility and phenotypic features.</p> <p><b>Methods</b> A total of 8 European populations of Caucasian ancestry were included, comprising 3014 patients with SSc and 3125 healthy controls. Four genetic variants of TNFSF4 gene promoter (rs1234314, rs844644, rs844648 and rs12039904) were selected as genetic markers.</p> <p><b>Results</b> A pooled analysis revealed the association of rs1234314 and rs12039904 polymorphisms with SSc (OR 1.15, 95% CI 1.02 to 1.31; OR 1.18, 95% CI 1.08 to 1.29, respectively). Significant association of the four tested variants with patients with limited cutaneous SSc (lcSSc) was revealed (rs1234314 OR 1.22, 95% CI 1.07 to 1.38; rs844644 OR 0.91, 95% CI 0.83 to 0.99; rs844648 OR 1.10, 95% CI 1.01 to 1.20 and rs12039904 OR 1.20, 95% CI 1.09 to 1.33). Association of rs1234314, rs844648 and rs12039904 minor alleles with patients positive for anti-centromere antibodies (ACA) remained significant (OR 1.23, 95% CI 1.10 to 1.37; OR 1.12, 95% CI 1.01 to 1.25; OR 1.22, 95% CI 1.07 to 1.38, respectively). Haplotype analysis confirmed a protective haplotype associated with SSc, lcSSc and ACA positive subgroups (OR 0.88, 95% CI 0.82 to 0.96; OR 0.88, 95% CI 0.80 to 0.96; OR 0.86, 95% CI 0.77 to 0.97, respectively) and revealed a new risk haplotype associated with the same groups of patients (OR 1.14, 95% CI 1.03 to 1.26; OR 1.20, 95% CI 1.08 to 1.35; OR 1.23, 95% CI 1.07 to 1.42, respectively).</p> <p><b>Conclusions</b> The data confirm the influence of TNFSF4 polymorphisms in SSc genetic susceptibility, especially in subsets of patients positive for lcSSc and ACA.</p&gt

    Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis

    Get PDF
    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci
    corecore