1,346 research outputs found

    Are Boredom Prone Individuals Creative and Curious About Their Environment?

    Get PDF
    After controlling for overall personality characteristics, boredom proneness did not predict creativity, but did positively predict people’s motivation to seek out novel experiences and find answers to things they do not understand. Thus, future work should explore how to use these relationships to help individuals respond effectively to the experience of boredom.Knowledge Mobilization at York - York University’s Knowledge Mobilization Unit provides services for faculty, graduate students, community and government seeking to maximize the impact of academic research and expertise on public policy, social programming, and professional practice. This summary has been supported by the Office of the Vice-President Research and Innovation at York and project funding from SSHRC and CIHR. [email protected] www.researchimpact.c

    Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells.

    Get PDF
    Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets

    Interaction between Nearly Hard Colloidal Spheres at an Oil-Water Interface

    Get PDF
    We show that the interaction potential between sterically stabilized, nearly hard-sphere [poly(methylmethacrylate)-poly(lauryl methacrylate) (PMMA-PLMA)] colloids at a water-oil interface has a negligible unscreened-dipole contribution, suggesting that models previously developed for charged particles at liquid interfaces are not necessarily applicable to sterically stabilized particles. Interparticle potentials, U(r)U(r), are extracted from radial distribution functions [g(r)g(r), measured by fluorescence microscopy] via Ornstein-Zernike inversion and via a reverse Monte Carlo scheme. The results are then validated by particle tracking in a blinking optical trap. Using a Bayesian model comparison, we find that our PMMA-PLMA data is better described by a screened monopole only rather than a functional form having a screened monopole plus an unscreened dipole term. We postulate that the long range repulsion we observe arises mainly through interactions between neutral holes on a charged interface, i.e., the charge of the liquid interface cannot, in general, be ignored. In agreement with this interpretation, we find that the interaction can be tuned by varying salt concentration in the aqueous phase. Inspired by recent theoretical work on point charges at dielectric interfaces, which we explain is relevant here, we show that a screened 1r2\frac{1}{r^2} term can also be used to fit our data. Finally, we present measurements for poly(methyl methacrylate)-poly(12-hydroxystearic acid) (PMMA-PHSA) particles at a water-oil interface. These suggest that, for PMMA-PHSA particles, there is an additional contribution to the interaction potential. This is in line with our optical-tweezer measurements for PMMA-PHSA colloids in bulk oil, which indicate that they are slightly charged.Comment: 8 pages, 8 figure

    Spectral Characteristics for Estimation Heavy Metals Accumulation in Wheat Plants and Grain

    Get PDF
    Plants would the start with step of a metal's pathway starting with the dirt on heterotrophic creatures for example, such that animals and humans, thus the substance from claiming metallic follow components for eatable parts of a plant representable accessible load of these metals that might enter those natural way of life through plants. Around metal elements, Cu and Zn would micro nutrients as they are essential in trace concentrations for physiological processes in plants. Furthermore consequently would a critical part from the soil–plant–food continuum. Therefor this study aimed to analysing the performance of multivariate hyperspectral vegetation indices of wheat (Triticum aestivum L.) in estimating the accumulation of these elements in plant dry mutter and the final product of Egyptian wheat crop irrigated with high concentrations of Zn and Cu. We applied five concentrations for each element (0.05, 20, 40, 100, and 150 ppm of Zn) and (0.02, 8, 10, 12, and 15 ppm of Cu) to a controlled greenhouse experiment to examine the effect of these concentrations on plant spectral characteristics and study the possibility of using spectroradiometry measurements for identifying the grain content of these metals. The results demonstrated that The hyperspectral vegetation indices had a potential for monitoring Zn concentration in the plant dry matter. NPCI and PSSR had a highest correlation with Cu phytoaccumulation into the grains with highest significant level (P-Value < 0.01) and (r) values (-0.39, -0.42)

    Edible crabs “Go West”: migrations and incubation cycle of Cancer pagurus revealed by electronic tags

    Get PDF
    Crustaceans are key components of marine ecosystems which, like other exploited marine taxa, show seasonable patterns of distribution and activity, with consequences for their availability to capture by targeted fisheries. Despite concerns over the sustainability of crab fisheries worldwide, difficulties in observing crabs’ behaviour over their annual cycles, and the timings and durations of reproduction, remain poorly understood. From the release of 128 mature female edible crabs tagged with electronic data storage tags (DSTs), we demonstrate predominantly westward migration in the English Channel. Eastern Channel crabs migrated further than western Channel crabs, while crabs released outside the Channel showed little or no migration. Individual migrations were punctuated by a 7-month hiatus, when crabs remained stationary, coincident with the main period of crab spawning and egg incubation. Incubation commenced earlier in the west, from late October onwards, and brooding locations, determined using tidal geolocation, occurred throughout the species range. With an overall return rate of 34%, our results demonstrate that previous reluctance to tag crabs with relatively high-cost DSTs for fear of loss following moulting is unfounded, and that DSTs can generate precise information with regards life-history metrics that would be unachievable using other conventional means

    Chemoselective Detection and Discrimination of Carbonyl-Containing Compounds in Metabolite Mixtures by \u3csup\u3e1\u3c/sup\u3eH-Detected \u3csup\u3e15\u3c/sup\u3eN Nuclear Magnetic Resonance

    Get PDF
    NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl-selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here, we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses, for example. Utilizing the 2-bond or 3-bond 15N-1H couplings, the 15N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl-containing compounds at NMR-detectable levels, six of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts

    Modeling the two-dimensional accuracy of soccer kicks

    Get PDF
    In many sports, athletes perform motor tasks that simultaneously require both speed and accuracy for success, such as kicking a ball. Because of the biomechanical trade-off between speed and accuracy, athletes must balance these competing demands. Modelling the optimal compromise between speed and accuracy requires one to quantifyhow task speed affects the dispersion around a target, a level of experimental detail not previously addressed. Using soccer penalties as a system, we measured two-dimensional kicking error over a range of speeds, target heights, and kicking techniques. Twenty experienced soccer players executed a total of 8466 kicks at two targets (high and low). Players kicked with the side of their foot or the instep at ball speeds ranging from 40% to 100% of their maximum. The inaccuracy of kicks was measured in horizontal and vertical dimensions. For both horizontal and vertical inaccuracy, variance increased as a power function of speed, whose parameter values depended on the combination of kicking technique and target height. Kicking precision was greater when aiming at a low target compared to a high target. Side-foot kicks were more accurate than instep kicks. The centre of the dispersion of shots shifted as a function of speed. An analysis of the covariance between horizontal and vertical error revealed right-footed kickers tended to miss below and to the left of the target or above and to the right, while left-footed kickers tended along the reflected axis. Our analysis provides relationships needed to model the optimal strategy for penalty kickers

    Evaluation of multi-directional speed qualities throughout adolescence in youth soccer: the non-linear nature of transfer

    Get PDF
    Training and assessment of agility is often prioritised by soccer coaches and practitioners aiming to develop multi-directional speed. Although the importance of agility is advocated throughout childhood and adolescence, limited data evidence agility performance at different stages of adolescence. The purpose of this study was to examine differences in multi-directional speed performance in youth soccer players spanning an entire soccer academy. A total of 86 male junior-elite soccer players volunteered to participate. Anthropometric data were collected, alongside performance data from a battery of physical tests including sprinting, jumping, change of direction, reaction time, and agility. Bayesian models using log-likelihoods from posterior simulations of parameter values displayed linear or curvilinear relationships between both chronological and biological age and performance in all tests other than agility and reaction time. For agility and reaction time tests, performance improved until ~14 years of age or the estimated age of peak height velocity whereby arrested development in performance was observed. Our results demonstrate that while most performance skills improve as chronological or biological age increases, measures of agility and reaction time may not. These findings support the notion that agility performance is complex and multifaceted, eliciting unique, challenging physical demands and non-linear development

    Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å.

    Get PDF
    Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Å resolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αβ heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion
    corecore